Compartir:

Es algo de lo que nunca hemos hablado en Agromática y yo creo que ya va siendo hora. La agricultura de precisión es una rama de la agricultura que está en boca de todos. Sensores, satélites, datos en tiempo real, monitorización, big data, teledetección, drones, GPS, software SIG, imágenes multiespectrales, mapeo de suelos, índices agrónomicos… todo un mundo tecnológico al servicio de un sector, que posiblemente sea de los más lentos a la hora de implantar estos sistemas. Y la gran pregunta es: ¿Merece la pena? El tiempo lo dirá. De momento hagamos una breve introducción.

La precisión llega (al fin) a la agricultura
Todos los sectores productivos llevan años a la vanguardia de las nuevas tecnologías. El sector de la automoción, la industria alimentaria, la medicina, hace uso de las famosas TIC (tecnología de la información y la comunicación) para sacar mejores rendimientos, mejorar sus productos, ahorrar costes, reducir emisiones, salvar vidas (medicina)… Sin embargo, la agricultura, desde el salto a la maquinaria agrícola autopropulsada por motor de combustión, no había vivido una revolución tecnológica hasta el S.XXI con la agricultura de precisión.

¿Qué es agricultura de precisión?
Una definición extensa que se me ocurre sobre agricultura de precisión sería: Agricultura que hace uso de las TIC para la gestión de los cultivos obteniendo una gran cantidad de variables agronómicas que permitan un análisis más preciso de la situación del cultivo con el fin de optimizar al máximo los recursos, ahorrar costes, dosificar con gran precisión las aplicaciones de insumos (agua, fertilizantes, fitosanitarios…), sacar el máximo rendimiento y contribuir a la sostenibilidad de los sistemas agrícolas.

Quizá las haya más cortas, precisas y más o menos acertadas, pero así es como la entendemos en este blog. En resumen: es poner la tecnología de la información al servicio de agricultura para mejorarla, punto final.

¿Dónde está la barrera entre agricultura «convencional» y la llamada agricultura de precisión?
No resulta muy complicado hacer esta distinción. Como se ha mencionado un par de párrafos más arriba, una de las revoluciones tecnológicas del S.XX en este sector fue la maquinaria autopropulsada por el motor de combustión. Desde el primigenio tractor hasta las máquinas recolectoras más vanguardistas de hoy en día, no ha habido muchos más cambios —entiéndase cambios como algo de calado global; hablamos de revolución, no de evolución.

¿Podríamos decir que agricultura de precisión es tener una estación meteorológica en un cultivo, o usar la información de las ya existentes para analizar patrones de clima en nuestra parcela y actuar en consecuencia? En cierta manera sí, solo en cierta manera, y aunque esto se lleva haciendo mucho tiempo, nunca se llamó agricultura de precisión. El término ha cobrado más sentido cuando se han ido añadiendo una gran cantidad de capas de información, obtenidas de diversas fuentes. Además, haciendo uso de esas capas, se consigue que «el laboreo» se haga en consecuencia a esa información. Me explico:

Si mediante una imagen de satélite, sacando algún índice agronómico de su cámara multiespectral, conseguimos saber las necesidades de fertilización de un cultivo, ya no solo a nivel global, sino a nivel mucho más concreto, podremos aplicar una dosis de fertilizante variable según esos datos y ahorrar muuuuucho dinero en algo tan caro como un fertilizante. Esto sería una primera fase de la agricultura de precisión: La toma de datos, su análisis y la interpretación de los mismos.

Índice NDVI de un cultivo
Resulta evidente que estos resultados en forma de mapa de necesidades de fertilización deben ser interpretados por un software que lleve nuestra dosificadora para saber en cada momento, cuánto fertilizante echar según ese mapa. Todo ello guiado por GPS. Ahí ya, estamos consiguiendo la cuadratura del círculo y eso ya es agricultura de precisión seria. Esta fase sería una segunda fase: Toma de decisiones y ejecución en función de la primera fase .

Hay muchos más ejemplos pero hoy no es el día de entrar en ellos. Queremos dar una breve pincelada de todo esto para, en un futuro no muy lejano, meternos más en materia. A continuación comentaremos algunas de las técnicas que se aplican. En otros artículos posteriores nos meteremos a fondo en cada una de ellas.

¿Qué tecnologías hay?
Maquinaria de conducción autónoma guiada por GPS
En el ejemplo anterior es una de las tecnologías aplicadas al servicio de la agricultura, maquinaria que es capaz de cubrir una parcela según un plan preestablecido por el agricultor. El conductor, una vez en la parcela, sólo tiene que vigilar la telemetría del proceso para que todo vaya según el plan establecido. Y sí, hablo de telemetría, como en la Fórmula 1, la agricultura también tiene de eso hoy en día.

Imágenes de satélite y de drones
Las imágenes de satélite y de drones, son imágenes captadas por cámaras un poco especiales que sacan fotografías aéreas de los cultivos en espectros no visibles para el ojo humano, como el infrarrojo. Con los datos obtenidos de estas cámaras podemos conocer, por ejemplo, el estrés hídrico o el vigor de un cultivo y a partir de ahí tomar las decisiones pertinentes.

agricultura de precisiónLos hay de iniciativa pública como Landsat (NASA), los actuales Sentinel (ESA) y privados (Quickbird, Deimos, Wordlview…). Actualmente los de mayor resolución son privados y la adquisición de imágenes es cara. De todas formas, la Agencia Espacial Europea (ESA) ha lanzado este año 2 satélites multiespectrales de bastante resolución, con bastante aplicación en la agricultura de precisión, pudiendo llegar a una resolución de 10m/pixel que resulta más que suficiente para analizar ciertos cultivos, cereales por ejemplo. La adquisición de imágenes de Sentinel es totalmente gratuita.

Una curiosidad al margen de la agricultura de precisión

Nos creemos que tenemos unos pocos satélites volando alrededor del globo (el METEOSAT, los del GPS, los de Google Earth y pocos más verdad?) Aquí te dejo un enlace a una web para que veas la cantidad de satélites y restos de cohete y basura espacial orbitando alrededor del globo que está acumulando la humanidad. ¡Es impresionante!

El mundo del drone está despertando y va cogiendo fuerza. Son muy útiles para un montón de disciplinas y la agricultura no se queda corta. Drones con cámaras multiespectrales, térmicas, LiDAR… que nos permiten una precisión que por ahora es imposible que un satélite nos pueda dar. Además no tenemos el efecto de las nubes ni hay que hacer tantas correcciones como en la foto de satélite (por la distancia y las interferencias de la atmósfera en la imagen). A misma resolución son más baratos que un satélite privado y nos aseguramos siempre la máxima calidad de imagen. Los últimos drones son capaces de cubrir más de un centenar de hectáreas en un solo vuelo.

Sensorización en parcela
en realidad son estaciones meteorológicas (algo menos precisas que las que se utilizan para climatología) pero más baratas y específicas según nuestras necesidades. Sensores de humedad ambiental, temperatura ambiental, humedad y temperatura a distintos niveles de profundidad del suelo, pluviometría, dirección y velocidad del viento, radiación solar, humectación foliar, dendrómetros… un sin fin de parámetros que se pueden medir y almacenar en memorias que se vuelcan y sirven para estudiar estados del cultivo y su relación con variables agronómicas del cultivo, plagas, etc. Este tipo de información es muy útil para hacer predicciones de aparición de plagas, predicciones de estados fenológicos… ¿os acordáis del artículo de la integral térmica?; pues tiene mucho que ver.

Mapeo de suelo
Otra de las capas de información que podemos conseguir mediante una maquinaria específica. Este dispositivo se pasea por nuestra parcela y nos dice una gran cantidad de parámetros del suelo. El análisis de un suelo agrícola en laboratorio es caro y además son datos extraídos de un muestreo puntual en distintos puntos de parcela. Pero un suelo es mucho más complejo y cambiante de lo que parece y podemos tener mucha diferencia a 20 metros de distancia. Con estos mapas de suelo, tenemos información continua de toda la parcela con parámetros como pH, conductividad eléctrica, textura, macronutrientes principales (NPK).

agricultura de precisión sonda de suelo
Big Data
La computación en la nube, el análisis de Gigabytes e incluso Terabytes de datos. Todos estos datos que recogemos de los diferentes sensores, imágenes, cuadernos de campo. Toda, absolutamente toda la información es útil, y sobre todo si es mucha la cantidad, ya que algoritmos estadísitcos más y menos complejos son capaces de sacar patrones de comportamiento que nos ayudan a tomar decisiones acertadas en cuanto a: momento y dosis de aplicación de fertilizantes y fitosanitarios, predicciones de cosecha, predicción de heladas, necesidades de riego en tiempo real e incluso accionamiento del riego automático en función de todos estos análisis… todo un mundo.

¿Es una panacea tal y como nos la están vendiendo?
Pues como todo, tiene su aplicación a muchos niveles. Cada tipo de tecnología (mapeo de suelo, drones, sensores…) dan diferentes capas de información que pueden sernos más o menos útiles dependiendo de nuestro objetivo, tamaño y tipo de cultivo y necesidades de optimización. Es una nueva agricultura mucho más tecnificada y desde luego traerá mejoras, ahorros al agricultor y un beneficio global que es una agricultura más sotenible. Esta agricultura está pensada para medianas y grandes superficies, donde la optimización de recursos tiene un papel más que fundamental.

¿Podemos aplicar la agricultura de precisión a nuestro huerto o jardín?
Ajá! Como sabemos que muchos de nuestros lectores tienen pequeños huertos de autoconsumo, esta es una gran pregunta que tiene una ambigua respuesta. La primera es NO. No vamos a pasar un vuelo de drone por nuestra huerta, ni haremos un mapeo de suelo de una parcela de unos pocos cientos de metros cuadrados.

agricultura de precisión sensor de lluviaLa otra respuesta es SI!, por supesto podemos sensorizar ligeramente un jardín o un huerto y eso sí podría ser introducir un poco de precisión en el manejo de nuestros cultivos o plantas ornamentales. Os ponemos un pequeño ejemplo:

Riego con aspersores en jardín y goteo en el huerto, gobernado por un programador de riego que lleva una sonda de humedad o sensor de lluvia y sólo regará días después de haber llovido o cuando la humedad del suelo caiga por debajo de un límite. ¡Ahí tienes agricultura de precisión en tu pequeño jardín!

Compartir:
Compartir:

¿Qué ventajas puede tener el cultivo hidropónico o cultivo sin suelo?

Se tiene un mayor control de la nutrición en la planta ya que no hay interacciones por parte del suelo (estructura, pH, biología, sales, etc.).

Como es un sistema cerrado donde se reciclan las aportaciones de agua y minerales, el aprovechamiento de los recursos es altísimo.
Hay muchas más alternativas de sustratos y aportaciones minerales que con respecto al cultivo tradicional en suelo.

Ausencia de algunas enfermedades comunes originadas por el contacto con el suelo agrícola (hongos que viven en el suelo).

Semejante uniformidad en los cultivos al tener el mismo agua y la misma solución nutritiva, y no estar influenciado por alguna características externa generada por el suelo.

Aumento de la productividad.
Aumento del desarrollo del cultivo y precocidad.
Aumenta la facilidad de la recolección del cultivo.
¡Eeeeehhh! ¿Todo son ventajas? Por supuesto que no, también hay algunos inconvenientes:

¿Qué inconvenientes puede tener el cultivo hidropónico o cultivo sin suelo?
Generas plásticos y residuos en una cantidad mucho mayor que en el cultivo sin suelo.
Los sustratos, al ser inocuos, generan mayores problemas con respecto a enfermedades en la raíz. Es decir, aparecen con menos probabilidad (tal como lo hemos dicho antes) pero cuando lo hacen causan más problemas.
Necesidad de realizar un control exhaustivo y permanente de la instalación. En el suelo agrícola los fallos se toleran mejor, pero en el cultivo hidropónico un fallo puede suponer la pérdida total del cultivo.
Mayor coste de instalación. Sustratos, riego, estructura, contenedores, etc.
Gran asesoramiento técnico debido al punto 3.
cultivo hidropónico de tomates
Una curiosa forma de cultivo hidropónico en tomates
Fuente: Kathy Kimpel
¿Qué sustrato elegir?

En el mercado hay un gran mundo de sustratos cada uno con sus propiedades particulares entre los que se incluye (aunque os parezca curioso) el agua. En este artículo que hicimos aparecen una gran parte de los sustratos que podéis comprar.

Si aún estás interesado en conocer todos los sustratos que se pueden utilizar, el ministerio de agricultura te ofrece la posibilidad de conocer las principales características de cada uno. Lo puedes hacer aquí. ¡Hay muchísimos!

Elegir uno u otro va en función del cultivo. Hay que tener en cuenta todas las características de cada uno, pero generalmente lo que se pide a un sustrato para un cultivo sin suelo es una gran capacidad de retención, drenaje rápido, buena aireación, baja densidad aparente, estabilidad y distribución del tamaño de partículas.

Capacidad de aireación

Esto significa que el sustrato debe contener aire después de regar, para que no se produzca asfixia radicular. El valor ideal con respecto a la capacidad de aireación está comprendido entre 20 y 30%.

Agua disponible

El agua disponible es el agua que puede aprovechar la planta sin dificultad una vez se ha regado y drenado correctamente. Este valor está influido por la tensión del agua y afecta de manera importante a la productividad. Un valor óptimo puede estar comprendido entre 20-30%.

Porosidad

Con la porosidad nos referimos al espacio libre que debe haber en un sustrato para que este sea ocupado o bien por aire o bien por agua (con nutrientes). Para que sea óptimo tiene que tener un porcentaje de porosidad del 85%.

El tamaño de las partículas

El tamaño de las partículas es un factor muy importante que, de hecho, lo hemos comentado dentro de las principales características que debe tener un buen sustrato. Este factor condiciona la porosidad o espacio libre que hay en el sustrato, y a mayor tamaño de partículas, mayor espacio. Nosotros queremos que haya una porosidad del 85 %, por lo que el tamaño de las partículas debe estar comprendido entre 30 y 300 micras.

El pH

Un sustrato puede influir positiva o negativamente en el valor del pH y afectar al cultivo. Los sustratos orgánicos, como la tierra, tienen mayor capacidad tampón, es decir, mayor resistencia a variar su pH. Para que un cultivo se desarrolle correctamente tendremos que saber el Ph correcto de crecimiento, y eso lo podemos saber a partir de este artículo sobre el Ph de las plantas . Normalmente estará comprendido entre 5,5 y 6,8.

Por no hacer esto demasiado pesado, en vez de poner aquí las propiedades de cada sustrato, le dedicaremos a cada uno un artículo y lo añadiremos a esta entrada, para que se pueda consultar de forma cómoda.

¿Qué fertilizantes se suelen emplear más en cultivo hidropónico?
Aunque seguramente haya muchos más, estos son los más empleados:

Nitrato magnésico: MgNo3 6H20
Nitrato cálcico: Ca(No3)2
Nitrato potásico: KNO3
Fosfato monoamónico: NH4H2PO4
Ácido fosfórico (100%): H3PO4
Ácido nítrico (37%): HNO3
Sulfato magnésico: MgSO4 7H2O
Sulfato potásico: K2SO4
Fosfato monopotásico: KH2PO4
Ácido fosfórico (37%): H3PO4
Nitrato amónico: NH4NO3
Ácido nítrico 100%: HNO3

4 ejemplos de soluciones nutritivas en 1.000 L

Solución nutritiva 1:

Nitrato de cal: 49,4 kg
Nitrato potásico: 38,4 kg
Microelementos: 2 kg
Solución nutritiva 2:

Nitrato potásico :31,8 kg
Nitrato amónico: 4 kg
Ácido fosfórico 75%: 12,3 L (líquido)
Solución nutritiva 3:

Nitrato potásico: 36,6 kg
Sulfato potásico: 16,5 kg
Microelementos: 2 kg
Solución nutritiva 4:

Nitrato potásico: 32,1 kg
Sulfato potásico: 1,4 kg
Fosfato monopotásico: 20,4 kg
Sulfato magnésico: 35,9 kg
Punto de control. ¿Va todo bien?
cultivo hidropónico
Hay una serie de medidas y comprobaciones periódicas para ver si está todo correcto y no nos hemos equivocado en la elección del sustrato, al cantidad de riego o el tipo de abonado. Vamos a verlo caso por caso:

El drenaje

El drenaje del sustrato en el cultivo hidropónico viene dado por la cantidad de agua de riego y las características del sustrato. Una forma de calcular el drenaje y saber si todo marcha bien es hacer lo siguiente:

Ver la cantidad de agua con la que se inicia el riego. Ejemplo: 100 Litros
Ver el número de goteros, aspersores o medios de riego que tenemos. Ejemplo 4
Ver la cantidad de agua que vuelve al origen, es decir, que se recicla: Ejemplo 85 Litros.
Calcular el porcentaje de agua drenada.
Hacer el cálculo es muy sencillo:

fórmula drenaje hidropónico
Esto lo podemos hacer por partes en la instalación para comprobar si todas esas partes tienen el mismo % de drenaje, lo cuál quiere decir que todo está en orden, no hay problemas de riego, de obstrucción de goteros o aspersores, etc.

Dotación de riego

El riego es una variable muy importante (indispensable) en el cultivo hidropónico y se tiene que estudiar detenidamente. Variará, como es lógico, según el cultivo y el sustrato que utilicemos, ya que cada planta tiene sus necesidades y cada sustrato tiene sus características (capacidad retención, porosidad, drenaje, etc.).

Hay que tener en cuenta lo que es la fracción de agotamiento, que significa el máximo porcentaje de agua que se pierde por evaporación o drenaje sin que se refleje efectos negativos en la planta, como marchitez. Para el caso del cultivo hidropónico, en la mayoría de sustratos, la fracción de agotamiento es del 5% y supone una forma de determinar la separación y tipo de riego a realizar.

Riego en el periodo 1:

Pasadas unas horas del amanecer, el sustrato tiene una fracción de agotamiento superior al 5% si no se ha regado por la noche, por lo que se debe regar para recuperar los niveles de humedad adecuados. La cantidad de riego se mide por el porcentaje de drenaje que se calcula a partir de la fórmula anterior, y en este periodo ha de estar comprendida entre un 5y un 10 %.

Riego en el periodo 2:

Corresponde a las horas de mayor radiación solar y en definitiva, de mayor calor. La humedad relativa desciende y ha de compensarse mediante el riego. Los niveles de drenaje han de ser más altos pero la frecuencia de riego menor, llegando al caso de tener que realizar dos riegos en un periodo inferior a 1 hora (algunos casos 30 min).

Riego en el periodo 3:

Son las últimas horas del día y apunto de anochecer. El nivel de drenaje se ha de reducir y corresponde al momento en el que las necesidades hídricas son bastante bajas.

Riego en el periodo 4:

El periodo 4 corresponde a la noche, con los niveles mínimos de temperatura y evapotranspiración. Normalmente no se riega salvo épocas muy calurosas, ya que se requiere una buena oxigenación de las raíces. Los niveles de drenaje están comprendidos entre el 10 y el 25 % al inicio del cultivo, y entre 25 y 30 % en su etapa de maduración.

Sistemas de recirculación del agua con nutrientes en cultivo hidropónico
Sistema NFT

Sistema NGS

Fuente: agromatica.es

Compartir:
Compartir:

Se está hablando mucho, y más que se hablará, de las «Smart Cities» o «Ciudades Inteligentes», pero no debemos olvidar que el medio rural también está experimentando una revolución gracias al uso de las nuevas tecnologías y al «Internet de las cosas» (entiéndase dispositivos inteligentes conectados a Internet, capaces de comunicarse e interactuar entre sí).

Los ejes estratégicos para desarrollar el Rural 2.0. son digitalización, sostenibilidad, inclusión e impulso de proyectos motor generadores de emprendimiento asociados a la identidad del territorio.

Para alcanzar los objetivos se establecen las siguientes prioridades:

  • Transformación del sector primario mediante el uso generalizado de nuevas tecnologías.
  • Protección del medioambiente, entendido no sólo como mantenimiento de espacios naturales, sino también como gestión eficiente de infraestructuras ambientales.
  • Búsqueda de la eficiencia energética y generación de energías renovables.
  • Creación de áreas productivas inteligentes como áreas comerciales o industriales.
  • Impulso del Turismo 2.0 aprovechando los recursos propios y específicos del territorio.
  • Mejora de los servicios al ciudadano, con especial atención a la tercera edad, jóvenes y mujeres.

El uso de las nuevas tecnologías no es una novedad en el campo español. Desde hace años se están desarrollando sistemas y aplicaciones para mejorar la producción, por ejemplo, existen aplicaciones que permiten planificar trabajos como la fertilización o el riego a partir de datos obtenidos de diversas fuentes (análisis del suelo, imágenes de satélites, obtenidas por vehículos aéreos no tripulados, etc.)

La «agricultura digital» permite al agricultor manejar infinidad de datos, analizar diversas variables y encontrar las soluciones más eficientes para aumentar la eficacia de los tratamientos y reducir el consumo de agua, nutrientes y fertilizantes, que se traduce en menores costes y menor impacto negativo en el ecosistema circundante. Todo ello contribuye a que la agricultura sea más sostenible y rentable.

Los sensores inalámbricos facilitan infinidad de información del entorno como temperatura, humedad, radiación solar, etc. Toda esa información se transfiere a un equipo remoto o unidad registradora de datos (datalogger) que envía la información a una unidad de control.

Los resultados que se obtienen de los sensores permiten la aplicación de varios índices espectrales, tales como el «Índice de Vegetación de Diferencia Normalizada» (NDVI) que analiza la cantidad, calidad y desarrollo de la vegetación a partir de la medición de la intensidad de la radiación de ciertas bandas del espectro electromagnético que emite la vegetación, el «Índice de Contenido de Clorofila del Dosel» (CCCI) que ayuda a prevenir los riesgos relacionados con el manejo de fertilizantes ricos en nitrógeno a partir del análisis de la cantidad de clorofila en la vegetación o el «Índice de Vegetación Ajustado al Suelo Modificado» (MSAVI) que está diseñado para minimizar el impacto del suelo en las primeras etapas de desarrollo de las plantas. Estos son solo tres ejemplos de los índices existentes, pues hay más de cien.

Escasez de agua

En la agricultura si hay un bien que sea preciado –por su escasez– es el agua. El uso generalizado de sensores inalámbricos permite obtener infinidad de datos sobre los recursos hídricos existentes y los patrones de consumo, que unidos al resultado de otros índices, permiten organizar las políticas de riego y bombeo sin apenas intervención humana.

No solo en la agricultura se emplean sensores, también en la ganadería. A modo de ejemplo, existen collares inteligentes no invasivos con sensores capaces de monitorizar el comportamiento de cada animal. Los datos se recopilan y se envían directamente al smartphone del ganadero cuando la actividad del animal excede los parámetros declarados normales. De este modo, el ganadero puede cuidar y hacer un seguimiento de cada animal con almacenamiento de datos históricos.

Automatización en el campo

Otro factor que ha revolucionado el campo es su progresiva automatización.

Recientemente, el Consejo Superior de Investigaciones Científicas (CSIC) presentó en el «Foro Transfiere de Málaga» un prototipo de robot –conocido como Robert– que permite automatizar parte del trabajo más duro de la vendimia. Se trata de una caja inteligente que sigue a los vendimiadores, evitando que estos tengan que arrastrar una pesada carga. Cuando el sistema detecta que la caja se está aproximando a su máxima capacidad, se pone en contacto con el centro de control y pide un reemplazo. Cuando llega la nueva caja, el robot que ha acompañado hasta ese momento al vendimiador se dirige a la bodega de manera autónoma.

No es la única novedad del CSIC. En el mismo certamen han presentado un dron que analiza de manera autónoma los cultivos en busca de botrytis, un hongo que causa la podredumbre de las plantas. Cuando el dron detecta un posible caso, envía a un robot terrestre que confirmará el caso y aplicará, si fuera necesario, un fungicida.

Estos robots no solo aliviarán el trabajo de los vendimiadores, también proporcionarán valiosa información al agricultor, como qué zonas del viñedo son más o menos productivas, cuáles necesitan más riego o nutrientes, etc. El agricultor va a tener un mapa de producción muy preciso que le ayudará a cuidar sus viñedos de forma eficiente.

Como vemos el Internet de las cosas, el Big Data, el Cloud Computing y la automatización no son exclusivos de urbanitas, pero para que alcancen todo su potencial en el rural es indispensable que se extiendan las redes de quinta generación (5G) que –entre otras ventajas– permiten albergar un mayor número de dispositivos conectados con un tiempo de respuesta inmediato.

Las redes 5G también ayudarán a que el rural puede repoblarse paulatinamente. Con la pandemia el teletrabajo se ha normalizado, pero exige una conectividad permanente que –en la actualidad– no está garantizada. Esa mejora llegará en no muchos años.

Compartir:
Compartir:

La agricultura de precisión es una rama de la agricultura que está en boca de todos. Sensores, satélites, datos en tiempo real, monitorización, big data, teledetección, drones, GPS, software SIG, imágenes multiespectrales, mapeo de suelos, índices agrónomicos… todo un mundo tecnológico al servicio de un sector, que posiblemente sea de los más lentos a la hora de implantar estos sistemas. 

 La precisión llega a la agricultura

Todos los sectores productivos llevan años a la vanguardia de las nuevas tecnologías. El sector de la automoción, la industria alimentaria, la medicina, hace uso de las famosas TIC (tecnología de la información y la comunicación) para sacar mejores rendimientos, mejorar sus productos, ahorrar costes, reducir emisiones, salvar vidas (medicina)… Sin embargo, la agricultura, desde el salto a la maquinaria agrícola autopropulsada por motor de combustión, no había vivido una revolución tecnológica hasta el S.XXI con la agricultura de precisión.

¿Qué es agricultura de precisión?

Una definición extensa que se me ocurre sobre agricultura de precisión sería: Agricultura que hace uso de las TIC para la gestión de los cultivos obteniendo una gran cantidad de variables agronómicas que permitan un análisis más preciso de la situación del cultivo con el fin de optimizar al máximo los recursos, ahorrar costes, dosificar con gran precisión las aplicaciones de insumos (agua, fertilizantes, fitosanitarios…), sacar el máximo rendimiento y contribuir a la sostenibilidad de los sistemas agrícolas.

Quizá las haya más cortas, precisas y más o menos acertadas, pero así es como la entendemos en este blog. En resumen: es poner la tecnología de la información al servicio de agricultura para mejorarla, punto final.

¿Dónde está la barrera entre agricultura «convencional» y la llamada agricultura de precisión? 

No resulta muy complicado hacer esta distinción. Como se ha mencionado un par de párrafos más arriba, una de las revoluciones tecnológicas del S.XX en este sector fue la maquinaria autopropulsada por el motor de combustión.

Desde el primigenio tractor hasta las máquinas recolectoras más vanguardistas de hoy en día, no ha habido muchos más cambios —entiéndase cambios como algo de calado global; hablamos de revolución, no de evolución—.

¿Podríamos decir que agricultura de precisión es tener una estación meteorológica en un cultivo, o usar la información de las ya existentes para analizar patrones de clima en nuestra parcela y actuar en consecuencia? En cierta manera sí, solo en cierta manera, y aunque esto se lleva haciendo mucho tiempo, nunca se llamó agricultura de precisión. El término ha cobrado más sentido cuando se han ido añadiendo una gran cantidad de capas de información, obtenidas de diversas fuentes. Además, haciendo uso de esas capas, se consigue que «el laboreo» se haga en consecuencia a esa información.

agricultura de precisión

La explicación

Si mediante una imagen de satélite, sacando algún índice agronómico de su cámara multiespectral, conseguimos saber las necesidades de fertilización de un cultivo, ya no solo a nivel global, sino a nivel mucho más concreto, podremos aplicar una dosis de fertilizante variable según esos datos y ahorrar muuuuucho dinero en algo tan caro como un fertilizante. Esto sería una primera fase de la agricultura de precisión: La toma de datos, su análisis y la interpretación de los mismos.

Resulta evidente que estos resultados en forma de mapa de necesidades de fertilización deben ser interpretados por un software que lleve nuestra dosificadora para saber en cada momento, cuánto fertilizante echar según ese mapa. Todo ello guiado por GPS. Ahí ya, estamos consiguiendo la cuadratura del círculo y eso ya es agricultura de precisión seria. Esta fase sería una segunda fase: Toma de decisiones y ejecución en función de la primera fase .

Hay muchos más ejemplos pero hoy no es el día de entrar en ellos. Queremos dar una breve pincelada de todo esto para, en un futuro no muy lejano, meternos más en materia. A continuación comentaremos algunas de las técnicas que se aplican. En otros artículos posteriores nos meteremos a fondo en cada una de ellas.

¿Qué tecnologías hay?

Maquinaria de conducción autónoma guiada por GPS

En el ejemplo anterior es una de las tecnologías aplicadas al servicio de la agricultura, maquinaria que es capaz de cubrir una parcela según un plan preestablecido por el agricultor. El conductor, una vez en la parcela, sólo tiene que vigilar la telemetría del proceso para que todo vaya según el plan establecido. Y sí, hablo de telemetría, como en la Fórmula 1, la agricultura también tiene de eso hoy en día.

Imágenes de satélite y de drones

Las imágenes de satélite y de drones, son imágenes captadas por cámaras un poco especiales que sacan fotografías aéreas de los cultivos en espectros no visibles para el ojo humano, como el infrarrojo. Con los datos obtenidos de estas cámaras podemos conocer, por ejemplo, el estrés hídrico o el vigor de un cultivo y a partir de ahí tomar las decisiones pertinentes.

Los hay de iniciativa pública como Landsat (NASA), los actuales Sentinel (ESA) y privados (Quickbird, Deimos, Wordlview…). Actualmente los de mayor resolución son privados y la adquisición de imágenes es cara. De todas formas, la Agencia Espacial Europea (ESA) ha lanzado este año 2 satélites multiespectrales de bastante resolución, con bastante aplicación en la agricultura de precisión, pudiendo llegar a una resolución de 10m/pixel que resulta más que suficiente para analizar ciertos cultivos, cereales por ejemplo. La adquisición de imágenes de Sentinel es totalmente gratuita.

Una curiosidad al margen de la agricultura de precisión

Nos creemos que tenemos unos pocos satélites volando alrededor del globo (el METEOSAT, los del GPS, los de Google Earth y pocos más verdad?) Aquí te dejo un enlace a una web para que veas la cantidad de satélites y restos de cohete y basura espacial orbitando alrededor del globo que está acumulando la humanidad. ¡Es impresionante!

El mundo del drone está despertando y va cogiendo fuerza. Son muy útiles para un montón de disciplinas y la agricultura no se queda corta. Drones con cámaras multiespectrales, térmicas, LiDAR… que nos permiten una precisión que por ahora es imposible que un satélite nos pueda dar. Además no tenemos el efecto de las nubes ni hay que hacer tantas correcciones como en la foto de satélite (por la distancia y las interferencias de la atmósfera en la imagen). A misma resolución son más baratos que un satélite privado y nos aseguramos siempre la máxima calidad de imagen. Los últimos drones son capaces de cubrir más de un centenar de hectáreas en un solo vuelo.

agricultura de precisión

Sensorización en parcela

en realidad son estaciones meteorológicas (algo menos precisas que las que se utilizan para climatología) pero más baratas y específicas según nuestras necesidades. Sensores de humedad ambiental, temperatura ambiental, humedad y temperatura a distintos niveles de profundidad del suelo, pluviometría, dirección y velocidad del viento, radiación solar, humectación foliar, dendrómetros… un sin fin de parámetros que se pueden medir y almacenar en memorias que se vuelcan y sirven para estudiar estados del cultivo y su relación con variables agronómicas del cultivo, plagas, etc. Este tipo de información es muy útil para hacer predicciones de aparición de plagas, predicciones de estados fenológicos… ¿os acordáis del artículo de la integral térmica?; pues tiene mucho que ver.

Mapeo de suelo

Otra de las capas de información que podemos conseguir mediante una maquinaria específica. Este dispositivo se pasea por nuestra parcela y nos dice una gran cantidad de parámetros del suelo. El análisis de un suelo agrícola en laboratorio es caro y además son datos extraídos de un muestreo puntual en distintos puntos de parcela. Pero un suelo es mucho más complejo y cambiante de lo que parece y podemos tener mucha diferencia a 20 metros de distancia. Con estos mapas de suelo, tenemos información continua de toda la parcela con parámetros como pH, conductividad eléctrica, textura, macronutrientes principales (NPK).

agricultura de precisión

Big Data

La computación en la nube, el análisis de Gigabytes e incluso Terabytes de datos. Todos estos datos que recogemos de los diferentes sensores, imágenes, cuadernos de campo. Toda, absolutamente toda la información es útil, y sobre todo si es mucha la cantidad, ya que algoritmos estadísitcos más y menos complejos son capaces de sacar patrones de comportamiento que nos ayudan a tomar decisiones acertadas en cuanto a: momento y dosis de aplicación de fertilizantes y fitosanitarios, predicciones de cosecha, predicción de heladas, necesidades de riego en tiempo real e incluso accionamiento del riego automático en función de todos estos análisis… todo un mundo.

¿Es una panacea tal y como nos la están vendiendo

Pues como  todo, tiene su aplicación a muchos niveles. Cada tipo de tecnología (mapeo de suelo, drones, sensores…) dan diferentes capas de información que pueden sernos más o menos útiles dependiendo de nuestro objetivo, tamaño y tipo de cultivo y necesidades de optimización. Es una nueva agricultura mucho más tecnificada y desde luego traerá mejoras, ahorros al agricultor y un beneficio global que es una agricultura más sotenible. Esta agricultura está pensada para medianas y grandes superficies, donde la optimización de recursos tiene un papel más que fundamental.

agricultura de precisión

¿Podemos aplicar la agricultura de precisión a nuestro huerto o jardín?

Ajá! Como sabemos que muchos de nuestros lectores tienen pequeños huertos de autoconsumo, esta es una gran pregunta que tiene una ambigua respuesta. La primera es NO. No vamos a pasar un vuelo de drone por nuestra huerta, ni haremos un mapeo de suelo de una parcela de unos pocos cientos de metros cuadrados.

La otra respuesta es SI!, por supesto podemos sensorizar ligeramente un jardín o un huerto y eso sí podría ser introducir un poco de precisión en el manejo de nuestros cultivos o plantas ornamentales. Os ponemos un pequeño ejemplo:

Riego con aspersores en jardín y goteo en el huerto, gobernado por un programador de riego que lleva una sonda de humedad o sensor de lluvia y sólo regará días después de haber llovido o cuando la humedad del suelo caiga por debajo de un límite. ¡Ahí tienes agricultura de precisión en tu pequeño jardín!

Compartir: