Compartir:

Vamos a explicar la diferencia entre un concepto y otro que debemos tener muy en cuenta a la hora de elaborar el plan de abonado, así conseguiremos una fertilización eficiente y una nutrición óptima para la planta.

La FERTILIZACIÓN consiste en proporcionar a la planta los fertilizantes (sólidos o líquidos) que se han seleccionado y preparado previamente.

La NUTRICIÓN es el proceso para obtener los nutrientes que hay en los fertilizantes una vez que han sido aplicados al medio donde se desarrolla las plantas, para que una vez absorbidos, puedan crecer y producir adecuadamente.

fertilización

Fertilización y Nutrición vegetal son dos conceptos muy relacionados pero distintos:

Una planta puede estar sobradamente fertilizada si se ha aportado suficiente cantidad de fertilizante, pero puede estar mal nutrida si con esos fertilizantes no puede tomar los nutrientes que necesita para poder desarrollarse y producir correctamente.

Por tanto, a la hora de planificar el abonado no debemos pensar en qué producto vamos a aplicar al suelo, sino en los nutrientes que queremos aportar a nuestros cultivos. Si las plantas reciben los nutrientes necesarios mediante el aporte de fertilizantes, estarán sanas y en condiciones de producir.

Utilizaremos una analogía entre el cuerpo humano y las plantas. La alimentación (al igual que fertilización) sería el acto de comer (alimentarse). A pesar de estar muy bien comidos o alimentados, en caso de utilizar alimentos de mala calidad o no ingerirlos en el momento adecuado, podríamos estar mal nutridos. En el caso de la fertilización de los cultivos, podemos fertilizar mucho (en exceso) pero si estos fertilizantes no se aportan en el momento oportuno, o el tipo de suelo interfiere con los fertilizantes aportados de forma inapropiada o interactúan otros factores exógenos, la planta puede tener una mala nutrición.

nutrición vegetal

La fertilización es una práctica que conlleva el aporte de fertilizantes para una correcta nutrición del cultivo, es decir, una herramienta de la nutrición vegetal. Un cultivo puede fertilizarse con altas cantidades de fertilizantes y sin embargo no estar bien nutrido (de hecho, es lo que sucede en muchos casos). La fertilización es la acción de aplicar fertilizantes, en cambio la nutrición es un concepto más amplio, que abarca al anterior, pero que tiene en cuenta todos los factores que influyen sobre el balance de nutrientes minerales que realmente necesita la planta para su crecimiento, desarrollo y producción de granos. Por lo tanto, se usa a la fertilización, entre otras prácticas, para nutrir a los cultivos.

Una correcta fertilización es el aporte correcto de fertilizantes en el momento oportuno, que tiene como consecuencia una buena nutrición de los cultivos. Para realizar una correcta fertilización y en consecuencia una buena nutrición, es necesario conocer la demanda de nutrientes de los cultivos, el momento de aportar los fertilizantes y conocer los parámetros exógenos, es decir, aquellos que influyen en la correcta asimilación de los fertilizantes (tipo de suelo, sistema de riego, características del agua de riego, etc).

Si quieres fertilizar correctamente y que tus cultivos tengan una nutrición óptima te recomendamos que utilices ORCELIS FITOCONTROL, donde podrás conocer las necesidades nutritivas de tus cultivos y cómo planificar una fertilización adecuada de una manera rápida y sencilla.

Por:

Marco A. Oltra Cámara, Doctor Ingeniero Agrónomo, profesor en la Universidad de Alicante y experto en fertirrigación.

Compartir:
Compartir:

El nitrato de calcio es considerado como uno de los abonos universales. Un fertilizante que está presente en la mayoría de cabezales de riego y se utiliza masivamente. De hecho, contando con que en muchas partes de España tenemos suelos calizos, aún continúa utilizándose en grandes cantidades. Las plantas demandan calcio pero, ¿tanto? Vamos a verlo.

Cuando hablamos de nitrato de calcio o nitrato de cal (también se conoce así), estamos mencionando un abono inorgánico cuya fórmula es Ca(NO3)2.

Dentro de esta sal sólo vamos a encontrar calcio, nitrógeno y oxígeno. Los 2 primeros componentes mencionados, las plantas (salvo el nitrógeno con las leguminosas), no pueden obtenerlo por sí mismos, por lo que necesitan de aportes especiales.

El problema de la movilidad del calcio y el nitrato de calcio
blossom end rot o podredumbre de calcio
Podredumbre apical o blossom end rot
Este tema es bastante recurrente en Agromática y volvemos a comentarlo. Hay que tener en cuenta que tanto NH4+ (amonio) como este calcio se absorben por flujo de masas (con el agua). Por eso, es importante que para facilitar la absorción de este último por las raíces de la planta, las condiciones hídricas del suelo sean buena y, además, no haya mucha presencia de amonio.

De ahí que siempre se diga que los problemas de peseta son originados por una carencia de calcio. Sin embargo, esta frase no está bien dicha del todo. No hay una falta concreta de calcio en el suelo, si no que simplemente la planta no lo puede asimilar. ¿Por qué?

Condiciones climáticas adversas
Exceso de humedad ambiental
Defecto de humedad ambiental
Una gran cantidad de luz que aumenta el crecimiento de la planta y diluye el volumen de calcio en savia.
Temperaturas altas con una variación en la humedad.
Condiciones de abonado
Suelos con gran cantidad de amonio (NH4+).
Gran acumulación de sales y potencial osmótico alto en el suelo (conductividad alta).
Antagonismos con otros elementos (magnesio, amonio, otros cationes, etc.).
Es por eso que el nitrato de calcio aportado ha de ir ligado con unas condiciones climáticas que nosotros apenas podemos controlar, y a unas condiciones prácticas que nosotros sí que tenemos acción directa sobre ellas, como las condiciones de abonado.

La causa de la peseta también está ligada con la baja tasa de transpiración de los frutos. Baja tasa de transpiración hace que el calcio no se movilice a los frutos en los momentos de mayor necesidad (cuaje y desarrollo inicial). Por ese motivo, aparece la podredumbre apical en la base del fruto, donde más le cuesta llegar al calcio.

Carencia de calcio en hojas
¿Cuál es la composición y riqueza del nitrato de calcio?
En la mayoría de sacos que nos vamos a encontrar el nitrato de cal vamos a encontrar lo siguiente:

Nitrógeno total (N): 15,5%
Calcio (CaO): 26%
Estos valores pueden variar en decimales. Normalmente el nitrógeno siempre lo vamos a encontrar entre 14,4 y 14,5%, y el calcio entre el 26 y el 27%.

Si nos metemos en temas de meq/L, muy común en cultivos de invernadero donde se trabaja con conductividad, se ha de contar que cada meq de calcio que se aporta, también se incluye 1 meq de nitrógeno.

En términos de mmoles/L, cada 1 mmol de calcio que se aporta, se añaden 2 mmoles de calcio. Esto es muy importante a la hora de establecer planes de abonado, ya que hay que controlar los aportes de nitrógeno. Muy a menudo son excesivos y repercute tanto en la planta como en nuestro bolsillo.

¿Qué es eso de mmol y cómo se calcula en el nitrato de calcio?
Es una forma de saber qué y cuánto abonamos. Es algo distinto a las unidades fertilizantes y tiene sus ventajas y sus inconvenientes. Con este primer sistema de trabajo, sabes cuánta cantidad de agua añades. Al menos, es un parámetro conocido.

Con las unidades fertilizantes es un valor desconocido. Imagina que hay que añadir 10 UF d nitrógeno. ¿En cuanta agua? Es algo que desconocemos y cuyo dato tenemos que aportar nosotros.

Si transformamos los mmoles de nitrato de calcio a un sistema de valores conocido, por ejemplo, los gramos de abono por metro cúbico de agua, entonces tenemos que hacer el siguiente cálculo:

1 mmol/L de nitrato cálcico · 182 mg/mmol = 182 g/m3 de agua.

Fertirrigación con nitrato de calcio
Hablando de fertirrigación de nuestros cultivos
Imagina que una planta hortícola de nuestro huerto, como un pimiento o un tomate, necesita, por ejemplo, 10 meq/L calcio. La forma más común de aportar esta calcio es, indudablemente, con el nitrato de calcio.

Imagina que vas a regar con 1.000 litros de agua tus tomates, ¿Cúántos kg de este fertilizante añado?

10 meq/L de calcio son 5 mmoles/L, ya que se tiene en cuenta su valencia.

Volvemos a la fórmula de antes:

5 mmoles/L de nitrato cálcico · 182 mg/mmol= 910 gramos/m3 de agua. Es decir, casi 0,9 kg para esos 1.000 L de agua. Con esto se da más que abastecida de calcio la planta. Y eso sin contar el calcio que tiene el agua de riego…

¿Cuáles son las dosis normales de nitrato de calcio?
No hay que generalizar, porque cada cultivo demanda unas necesidades diferentes. El calcio es un nutriente que se utiliza en exceso ya que muchas veces no se tiene en cuenta las grandes cantidades que aporta el agua, simplemente porque no se hace un análisis de agua.

Un agua muy puro, entendiendo pura con que tiene una conductividad bastante baja (por debajo de 1), puede llegar a tener entre 1 y 2 meq/L de calcio. Si para una hectárea en cada riego se puede aportar 40.000 litros de agua, podemos estar añadiendo a nuestro suelo entre 1 y 2,5 kg/ha de calcio puro.

Esto, en términos de nitrato de calcio, serían en torno a 3,70 y 9,25 kg/ha.

Para un pimiento en intensivo, con un gasto de 4.000 m3 de agua por campaña, estaríamos hablando de 1.000 kg de nitrato cálcico, con un precio de 400 €.

Por eso, el aporte de calcio es variable y se debe hacer teniendo en cuenta esto. Un análisis de agua vale muchísimo menos que estos 400€ que estamos contando.

Dosis normales para un cultivo medio están entre 300 y 800 kg/ha, según recomendaciones de las casas de fertilizantes.

¡Ojo! No mezclar nitrato de calcio con…
Como ya dijimos en su día sobre la incompatibilidad entre fertilizantes, el nitrato de calcio es un fertilizante muy follonero.

nitrato de calcio e Incompatibilidad entre fertilizantes

Puede ser mezclado con la mayoría de soluciones para abono, a excepción de todas aquellas que contenga sulfatos (sulfato amónico, sulfato de magnesio, sulfato potásico, etc.) y fósforo (ácido fosfórico, fosfato monopotásico, fosfato monoamónico.

Fuente: agromatica.es

Compartir:
Compartir:

Estamos acostumbrados a trabajar con los NPK, nitrógeno-fósforo-potasio y de sobra conocemos los micronutrientes. Lo primero que se nos pasa por la cabeza cuando vemos una planta amarillenta es que tiene clorosis férrica. Sin embargo, muchas otras veces desconocemos que es el magnesio que el también interviene en dar verdor al cultivo. Hoy hablamos de su importancia.

Función del magnesio en la planta
Dentro de todas las formas de magnesio, la planta sólo absorbe el ión Mg2+. Esta asimilación se puede hacer tanto aportada en riego (fertirrigación) y posterior absorción radicular o en aporte foliar, a través de la penetración vía epidermis por las hojas.

Un cultivo medio realiza una extracción de magnesio que va desde 20 a 80 kg/ha. Tiene un papel fisiológico claro y clave para el desarrollo de cualquier planta. En esto que comentamos a continuación participa este elemento.

Elemento básico en la molécula de clorofila. Inverviene en el verdor de la planta. Representa el 2,7% del peso total, pero es indispensable.

Interviene en la síntesis y formación de proteínas. Carotenos y Xantofilas (formación de color en frutos) necesitan magnesio para cumplir determinados metabolismos básicos de la planta.
Reduce la transferencia de carbohidratos de las hojas y tallos a la raíz. En cultivos de raíz como patata, remolacha u otros hay que tenerlo muy en cuenta.
Aparece una gran sensibilidad a la luz. En verano, se pueden ver necrosis en las hojas por una falta de fotoregulación del cultivo.
El magnesio en la molécula de clorofila
Síntomas de deficiencia
Aunque el magnesio tiene mayor movilidad que el calcio, hay veces que bien por presencia de otros elementos antagonistas (potasio, sodio, calcio, etc.) como por la carencia propia de magnesio en el suelo, la planta pueda presentar síntomas de deficiencia.

Como el magnesio interviene en la fotosíntesis y en la molécula de clorofila, lo primero que podemos pensar es que una carencia de magnesio induce una clorosis en el cultivo.

La movilidad del magnesio es alta en la planta, por eso, al contrario que con el hierro, la carencia de magnesio suele aparecer en la parte inferior de cualquier cultivo. Es decir, en las hojas viejas.

Carencia de magnesio en cultivo de pimiento
Aunque estemos abonado correctamente con aportes continuados de magnesio, puede ser que aparezcan clorosis de magnesio en la planta. Esto se debe sobretodo a grandes aportes de potasio en fase de maduración de frutos, reduciendo la asimilación de magnesio.

A modo de ejemplo, ésta sería el orden, por facilidad de absorción, de estos cationes:

Na+ > K+ > Mg2+ > Ca2+

Viene determinado por el tamaño de los iones y por la carga eléctrica. Menor tamaño y menor carga del catión tendrá mayor facilidad de absorción

El agua de riego, una fuente de calcio y magnesio
Dependiendo de la zona donde nos encontremos, en muchas ocasiones y en función de la conductividad del agua, podremos aportar una gran cantidad de calcio y magnesio de forma gratuita.

Hay que pensar que este aporte no siempre es absorbible por la planta, ya que muchas veces viene bloqueado y guarda mucha relación con la cantidad que haya entre estos dos elementos.

Hay una regla que establece que para que haya una perfecta absorción de calcio y magnesio del agua de riego ha de tener una relación de 2 a 1 en adelante. Es decir, el doble de calcio que de magnesio. Y de ahí en adelante.

Interpretar el contenido de calcio y magnesio de un análisis de agua
Si cogemos un análisis de agua de laboratorio, podemos obtener una gran cantidad de información relevante para poder ahorrarnos dinero en la aportación de fertilizantes.

En este caso, tenemos que saber medir las unidades con las que se trabajan en estos análisis. Meq/L, ppm o mmoles/L.

Si nos vamos a un agua tipo en muchas zonas de España, con un pH de 8,5 y una conductividad de 1,2 mS/cm, podemos tener un gran aporte de calcio y magnesio, entre otros. En este ejemplo, la cantidad quedaría de la siguiente manera:

Calcio: 200 mg/L = 10 meq/L = 5 mmoles/L
Magnesio: 100 mg/L = 8,23 meq/L = 4,11 mmoles/L
Con esto, cubriríamos prácticamente las necesidades del cultivo de calcio y magnesio, por lo que no haría falta aportar estos nutrientes. Nos podemos imaginar el gran ahorro que obtendríamos con ello.

Magnesio en agua

Sin embargo, la regla comentada anteriormente nos dice que debe haber prácticamente una diferencia o ratio de 2 para que se produzca la máxima absorción de los dos nutrientes, por lo que podría ser adecuado, en la fase de cuajado y engorde de frutos, de aportar un extra de calcio (nitrato cálcico, por ejemplo).

Pongamos que el agua que tenemos es de grifo y tiene menor número de sales disueltas. Un caso con un pH prácticamente neutro (7,5) y una conductividad eléctrica de 0,45 mS/cm.

Éstos son los valores que podemos ver en el análisis de agua.

Calcio: 22 mg/L = 1,1 meq/L = 0,55 mmoles/L
Magnesio: 3 mg/L = 0,25 meq/L = 0,12 mmoles/L
En este caso, con un agua «plana», hay que aportar calcio y magnesio, de forma que completemos los estándares recomendados en fertirrigación. Hasta 10 meq/L de calcio y 4 meq/L de magnesio.

Formas de aportar magnesio a la planta
Podemos encontrar muchas formas de aporte de magnesio, ya sea en forma quelada, complejada o sin aditivos mejorantes de absorción.

Las fórmulas más conocidas (y económicas) de aporte de magnesio son el nitrato de magnesio y el sulfato de magnesio. Cada una con una riqueza distinta de este elemento.

Nitrato de magnesio: 10,5% N (nitrógeno) y 15% MgO.
Sulfato de magnesio: 16,6% MgO y 32% SO3 (azufre).
También podemos encontrar, como hemos dicho, formas queladas o magnesio complejado con ácidos orgánicos.

Formas de quelación pueden ser los heptagluconatos, quelado EDTA, ácido hexahidroxi cáprico.

Fuente: agromatica.es

Compartir:
Compartir:

La fertilización de las plantas siempre resulta algo complejo si nunca se ha hecho. Existen muchas formulaciones y cada cultivo requiere de un fertilizante o fertilizantes específicos si se quieren hacer bien las cosas. Además, en cada estado fenológico del cultivo, los aportes de nutrientes van a ser diferentes.

¿Hay un mejor fertilizante para todo? Lo cierto es que no. La especificidad de cada cultivo, sustrato y situación, exige diferentes tipos de fertilizantes que luego veremos pero sí es cierto que los hay muy específicos en sus formulaciones para según que cultivos y usos.

Pero antes, sentemos unas bases sobre la nutrición vegetal a grandes rasgos por si eres nuevo en esto de alimentar a la flora.

Los macronutrientes esenciales para casi cualquier planta.
Son 3 y los conocerás de sobra si ya te has paseado más veces por este blog. El famoso NPK. Nitrato, fósforo y potasio.

¿Y no te preguntas por qué el carbono no está incluido? Al fin y al cabo, los seres vivos de este planeta estamos basados en la química del carbono.

Lo obtienen principalmente del CO2 que metabolizan con la fotosíntesis. Este carbono es el pilar fundamental de la glucosa y de muchas otras moléculas que las plantas metabolizan.

Los 3 macronutrientes NPK no se encuentran en el aire en las cantidades suficientes como para que una planta pueda abastecerse. Es cierto que el aire tiene nitrógeno en un 79% aproximadamente pero se considera inerte por ser nitrógeno gas N2. Esta molécula contiene un triple enlace que la hace treméndamente estable y es complicado que reaccione con la planta de forma directa. Hay algunas plantas que pueden nutrirse de N2 atmosférico, contadas excepciones. Lo más habitual es que el nitrógeno atmosférico sufra un ciclo, en el que se va fijando al suelo convirtiéndose a medio y largo plazo en nitrógeno mineral, la forma que tiene planta de absorberlo para sus procesos metabólicos.

Cualquier cultivo necesita de estos 3 elementos para crecer correctamente
Estos tres macronutrientes pueden venir de diferentes orígenes, orgánico o mineral que luego veremos. Ahora vamos a centrarnos en cuál es la función de cada uno de ellos. Tiene muchas funciones pero las más destacables son:

Nitrógeno: Importantísimo en las primeras fases del cultivo y en el crecimiento de la parte vegetativa de planta. Se suele decir que el nitrógeno es importante para las «partes verdes» de la planta.

Fósforo: Importante para la implantación del cultivo en su fase vegetatativa (estimula el desarrollo radicular). Además, debemos tener un buen contenido en fósforo para asegurar una buena floración y cuajado.

Potasio: Importante en la formación de frutos y maduración. Es un elemento muy importante en frutales por ejemplo para conseguir frutos grandes y de calidad.

Las proporciones de cada uno de ellos en una formulación, depende del cultivo, del momento en el que se encuentre el propio cultivo (primeras fases, floración, cuajado…) y de la calidad nutricional del suelo que tengamos que suplir. Algunos ejemplos de formulaciones comunes son:

NPK 13-40-13
NPK 15-15-15
NPK 15-5-30
NPK 14-40-5
NPK 23-5-5
NPK 15-10-15
NPK 17-6-18
NPK 20-20-20
NPK 20-5-20
NPK 7-12-38
Hay muchas, muchas más.

Fertilizante compuesto de mezcla
Y si hay macro, es porque también hay micronutrientes
Prácticamente el 99% de los minerales que la planta necesita son estos tres. Y aunque los micronutrientes en cantidad no supongan nada en comparación con NPK, su importancia en pequeñas dosis es vital para muchas funciones metabólicas de las plantas.

Son principalmente el hierro, el manganeso, zinc, cobre, boro y molibdeno.

El déficit de alguno de estos nutrientes también acarrea serios perjuicios para el crecimiento de las plantas que muchas veces son confundidos con enfermedades producidas por virosis, bacterias hongos o nematodos. La clorosis férrica es un ejemplo típico de carencia de hierro.

Los planes de abonado deben incluir en sus fórmulas también ciertas dosis muy controladas de estos micronutrientes. Normalmente, una buena fertilización orgánica en forma de humus, compost, estiércol madurado, abonos verdes etc. suele suplir estos micronutrientes esenciales y otros que no hemos mencionado.

Los mejores fertilizantes se dan en cultivos muy tecnificados.
Ya está demostrado que un exceso de fertilización es muy perjudicial para el medio. Una fertilización mal ejecutada por exceso puede afectar a la planta negativamente, puede alterar el equilibrio del suelo, tanto a nivel fisicoquímico como biológico. También puede contaminar acuíferos, haciendo totalmente inservible el agua para consumo humano.

Por eso, cada vez más se optimizan al máximo las dosis y se hacen mejores y mejores fertilizantes, cada vez más específicos y tecnificados.

Aquellos cultivos de altas inversiones como los invernaderos con o sin suelo (hidropónicos) la dosificación de macro y micronutrientes es de una precisión asombrosa. El retorno de inversión también es algo que condiciona la elección de los fertilizantes y nos podemos permitir ese nivel de tecnificación. Cultivos de invernadero por ejemplo (tomate, pimiento, fresa…) son cultivos típicamente tecnificados.

Y si nos vamos a hidropónicos donde la fertilización líquida hace su acto de presencia, entonces ya los niveles de tecnificación en la fertilización se nos disparan.

Fertilizantes según su formulación:
Abonos simples: Aquellos que aportan un solo nutriente a la planta. Son cada vez menos utilizados, en favor de los abonos complejos. De todas formas, para correcciones puntuales o necesidades muy especiales se siguen usando.

Abonos Compuestos: Tiene dos o tres de los macronutrientes esenciales. Se llaman binarios (2 de los 3 nutrientes) o ternarios (los 3 nutrientes) según su formulación . Pueden ser complejos (reaccionados químicamente NPK en un mismo gránulo) o mezclas (gránulos de cada nutriente por separado y mezclados).

Fertilizantes según su estado:
Sólidos: Suelen presentarse en forma granulada. Son muy habituales en monocultivos de gran extensión (secano y regadío) como cereal, leguminosas etc. Procedentes de la industria de fertilizantes. Son sintetizados de forma que se asegura que cada gránulo tenga la misma composición y equilibrio de cada nutriente. Este tipo son los mayoritarios en la agricultura convencional.

Líquidos: Son los mejores fertilizantes en cultivos de alta tecnificación donde el abonado va junto con el agua de riego. En cultivos de alto rendimiento como la marihuana se suelen dar este tipo de productos tan específicos. Y además son abonos totalmente de composición orgánica con su proporción concreta de NPK y contenidos variables y equilibrados de los antes llamados micronutrientes. Productos como Fertilizantes Biological Activated Cocktail BAC o Fertilizantes Advanced Nutrients son un ejemplo de la amplia variedad de fórmulas, mezclas y formas de aplicación.

Fertilizantes según su modo de aplicación
Otra clasificación habitual se produce en el modo de aplicación aunque esta clasificación es más abierta.

Abonos de fondo: Son aquellos que se aplican al suelo antes de la implantación del cultivo o en el momento de sembrar y suelen ser de liberación controlada.

Abonos de cobertera: Abono que se aplica durante el alguna fase concreta del cultivo para apoyar nutricionalmente en algún estado fenológico crucial para el cultivo como la floración o el cuajado.

Fertilizantes de aplicación foliares: Aquellos que se aplican pulverizados sobre las hojas como fertilización de apoyo

Fertilizantes para fertirrigación: Son aquellos que se mezclan con el agua de riego. Utilizados en cultivos de regadío tecnificados donde se controla al milímetro la dosis de riego (invernaderos, hidroponia).

Ninguna de estas clasificaciones son excluyentes. Es decir, cuanta más información tengamos o podamos dar de un fertilizante, más seguros estaremos de cómo usarlo. Un ejemplo puede ser un Abono compuesto ternario líquido para aplicación foliar 10-20-10. Con esto estamos dando una gran cantidad de cómo es ese fertilizante.

Compartir:
Compartir:

La línea de fertilizantes Fertihouse nace de la mano del ingeniero agrónomo Carlos Rodríguez Orta como fruto de años de experiencia en el cultivo de hortícolas de alto rendimiento. Experto en nutrición vegetal en sustratos inertes, estos productos se diferencian en la tecnología que usan para la protección y transporte de los iones minerales de los cuales se nutre la planta.

Podéis encontrar Fertihouse en más de 20 tiendas de la provincia de Murcia y Alicante y por supuesto en su tienda web.

Características de la tecnología Fertihouse
La tecnología propia de Fertihouse está basada en moléculas de carbono de bajo peso molecular fácilmente asimilables por la planta, transformadas a partir de ácidos fúlvicos de roca natural mediante un proceso físico exclusivo.

Estudios sobre el comportamiento microbiano en el suelo han demostrado que los compuestos de carbono y azúcares de estructura sencilla las sustancias fúlvicas de determinado tamaño de molécula producen un mayor estímulo de esta microbiota en comparación con estructuras orgánicas más complejas.

«Tus plantas más sanas, más grandes y durarán más años en plenitud.

El efecto de los productos Fertihouse es una mejor asimilación de agua y nutrientes y esto se traduce en plantas más sanas, vigorosas y de mayor longevidad.

Sus productos, son fertilizantes completos que aportan todos los macronutrientes primarios, los macronutrientes secundarios y los micronutrientes. Están libres de cloruros, sulfatos y metales pesados.

Línea de productos Fertihouse
Fertihouse tiene un tipo determinado de fertilizante para cada momento del ciclo de cualquier tipo de planta teniendo cada uno un estudiado equilibrio entre cationes y aniones. Los productos Fertihouse son fertilizantes completos que aportan todos los macronutrientes primarios, los macronutrientes secundarios y los micronutrientes. Están libres de cloruros, sulfatos y metales pesados.

Fertihouse Universal
FertiHouse Universal Fertilizante
Solución fertilizante completa para los que no quieren complicaciones. Se puede usar en cualquier tipo de planta tanto de interior como de exterior y en cualquier fase vegetativa.

Fertihouse Crecimiento Vegetativo
Fertihouse Vegetativo fertilizante
Una solución fertilizante completa para favorecer un potente crecimiento de la planta en los primeros estados de desarrollo. La relación de nitrógeno/potasio es de tres.

Fertihouse Floración
Fertihouse Floración fertilizante
Una solución fertilizante completa para inducir en la planta el inicio de la fase de floración. La relación nitrógeno/potasio es de 1.

Fertihouse engorde y maduración
Es una solución fertilizante de fósforo, potasio y microelementos indicada en la última fase de aquellas plantas con fruto para favorecer su llenado y maduración.

Fertihouse Cobre
Es una solución fertilizante de cobre complejado con ácido glucónico para asegurar la máxima absorción por parte de la planta.

Hasta aquí hemos visto parte de la línea de abonos minerales, pero Fertihouse también tiene una línea de abonos orgánicos.

Fertilizantes de origen orgánico Fertihouse
Fertihouse Kelp
Extracto de Eklonia Maxima procedente del atlántico sur con un gran efecto bioestimulante.

Fertihouse Organium
Aminoácidos de origen vegetal al 8% y extractos de microalgas de agua dulce.

Fertihouse Huma Power

Extracto húmico de gran calidad procedente de leonardita canadiense, de pequeño tamaño de molécula, gran cantidad de grupos funcionales, excelente estado de oxigenación y gran reactividad. Posee un 21,5 % de extracto húmico (14% de ácidos fúlvicos y 7,5% de ácidos húmicos), un 12% de carbono orgánico y un 5% de K2O.

Fertihouse Plus
Aminoácidos libres al 6% de origen vegetal de alta calidad y fácilmente asimilables por la planta con un 14% de materia orgánica y un 8% de carbono orgánico. Es una fuente de carbono orgánico lo que hace que la planta aproveche más eficientemente el abono a la vez que aumenta la eficiencia del uso del agua.

Fuente: agromatica

Compartir:
Compartir:

Hoy vamos a conocer las necesidades exactas que tiene un suelo independientemente de la planta que cultivemos (eso ya dependerá del abonado de mantenimiento). Imagina que tenemos un suelo al que nunca hemos abonado.

¿Cómo lo preparamos? Vamos a conocerlo.

Básicamente, de lo que nosotros estamos hablando es del abonado de fondo o la forma en la que previamente preparamos el suelo, pero también sirve para mejorar las condiciones de nuestro jardín. Imagínate que tienes que preparar un bancal profundo. Estamos echando la misma cantidad de abono orgánico (compost o estiércol) en un suelo pobre que en un suelo rico, y en principio no debería ser así. Bueno, puestos a no ser quisquillosos, total, para un huerto pequeño tampoco hay que andar tonteando, ¿no?

¿Pero y si lo hacemos a gran escala o tenemos un huerto grande? Aquí ya, cada kilogramo de abono cuenta y podemos optimizarlo enormemente con unas simples fórmulas. ¿Probamos?

Lo primero de todo, conocer cómo es nuestro suelo
Para hacerlo bien necesitamos conocer una serie de parámetros. Uno de ellos es saber qué textura tiene nuestro suelo. Lo podemos hacer a través de un análisis de suelo o bien de forma casera como ya comentamos.

A partir de esto ya podemos disponer de gran información en nuestro suelo, y conoceremos el drenaje, la forma en la que tenemos que regar y, también muy importante, la calidad del agua (siempre que podamos escoger).

abonado de fondo
La importancia del abonado de fondo
El abonado de fondo es una enmienda que realizamos 1 mes o 2 antes de plantar cualquier cultivo. Lo que buscamos es aumentar las propiedades de nuestro suelo, mejorar la textura, el drenaje, y en definitiva, hacer una cama mucho más agradable para nuestras plantas. Saber cuánto hay que añadir es sencillo.

Imagínate que sabemos (a través de un análisis de suelo) que nuestra parcela donde queremos cultivar tiene un 1,6 % de materia orgánica. Es un porcentaje bastante bajo donde periódicamente tendremos que abonar en profundidad nuestras plantas.

Algunos autores prestigiosos establecen entre un 2 y un 3% de materia orgánica como óptimo para un suelo. Hay quién pide más, pero nosotros, que tenemos una mentalidad ahorradora, consideramos que un 2 % es más que suficiente para mantener nuestro jardín. Si tienes pretensiones económicas, quizá puedas subir un poco más. 😉

Bien… empecemos con los cálculos…

DATOS PREVIOS:

Densidad del suelo: 1,74 gr/cm3
Porcentaje de materia orgánica de nuestro suelo: 1,6
Profundidad de mejora del suelo: 0,3 m
¿Qué cantidad de materia orgánica tiene actualmente nuestro suelo?
Cantidad de M.O. [2%]: 10.000 (m2) · 0,3 (m) · 1,74 (gr/cm3)· (2/100) = 104.400 [kg/ha] = 104,4 [t M.O./ha]

Pero nosotros tenemos 500 metros cuadrados de jardín, por lo que tendría que ser 5.220 kg.

Es mucha cantidad de materia orgánica, ¡y es lo que queremos! Ahora vamos a ver cuanta tiene actualmente nuestro suelo…

Cantidad de M.O. [1,6%]: 10.000 (m2) · 0,3 (m) · 1,74 (gr/cm3)· (1,6/100) = 83.520 [kg/ha] = 83,52 [t M.O./ha]

Y para la superficie de nuestro jardín: 4.176 kg

Ahora simplemente tendremos que restar la cantidad ideal con la nuestra:

Cantidad de M.O. que necesitamos: 5.220 – 4.176 = 1.044 kg

Fíjate, para mejorar enórmemente nuestro suelo tan sólo necesitamos 1.044 kg (poco más de una tonelada) de materia orgánica.

pila de estiércol
Vale… ¿Y cuánto cuesta eso?
Como siempre, tenemos que ver si es factible económicamente aportar dicha cantidad de materia orgánica. Para ello nos vamos a las bases de precios de jardinería y vemos lo que cuesta 1 metro cúbico (luego lo convertiremos a kg) de estiércol tratado.

1 metro cúbico de estiércol tratado = 27,29 €

Parece barato ¿no? Bueno, a fin de cuentas son desechos de animal… 😉

¿Cuántos kg tiene un metro cúbico?
Para saber esto necesitamos conocer la densidad del estiércol. Hay dos autores (Boussignault, Keyser) que coinciden en que la media de densidad del estiércol es de 400-500 kg/metro cúbico. Nosotros, que buscamos el término medio, lo vamos a dejar en 450 kg. Ahora ya sabemos que 450 kg de estiércol tratado vale 27,29 €.

Como nosotros necesitábamos 1.044 kg, dicha cantidad de estiércol tratado nos costará 63 €.

¡Tan sólo 63 € te separan de una gran mejora de tu suelo!

Esto ha sido un ejemplo claro que fácilmente puedes adaptar a tus condiciones de trabajo. Lo único difícil de conseguir es conocer el porcentaje actual de materia orgánica de tu suelo. Sabiéndolo el resto es fácil. Sólo la superficie de suelo, la profundidad a la que querrías mejorarlo y la densidad, y ¡listo!

Si quieres, puedes ir empezando a generar dicha cantidad de forma totalmente casera.

Fuente: aromatica.es

Compartir:
Compartir:

El manganeso (Mn) es un importante micronutriente para las plantas y requerido en mayor cantidad. Al igual que sucede con cualquier otro elemento, su deficiencia o su toxicidad pueden representar una limitante para el desarrollo de las plantas.

manganeso Generalidades sobre el manganeso
El manganeso contribuye al funcionamiento de varios procesos biológicos incluyendo la fotosíntesis, la respiración y la asimilación de nitrógeno. También interviene en la germinación del polen, el crecimiento del tubo polínico, el alargamiento celular en la raíz y la resistencia a patógenos de la misma.

Es esencial en la síntesis de proteínas, ya que participa en la asimilación del amonio (NH4+). Regula el metabolismo de los ácidos grasos. Fomenta la formación de raíces. Activa el crecimiento, influyendo el crecimiento alargador de las células. Convierte los nitratos que forman las raíces en formas que la planta pueda utilizar.

El manganeso también interviene de forma específica en la actividad hidroxilamina reductasa, dentro de la fase de la reducción de los nitratos y en actividad ácido indol acético oxidasa.

La deficiencia de manganeso en los cultivos se manifiesta mayormente en una clorosis en las hojas ya que el manganeso juega un papel importante en la fotosíntesis y por ende puede influir en la clorofila que es la cromoproteína que le da el color verde a las plantas.

El hierro
El manganeso y el hierro están vinculados por lo que los síntomas de deficiencias suelen confundirse, sin embargo, a diferencia principal consiste en que, en el caso del manganeso, aparecen áreas bronceadas entre las venas; y en el del hierro, las hojas se vuelven casi blancas.

Cuando los suelos tienen un pH muy alto o el suelo es muy arenoso puede presentarse una deficiencia del manganeso ¿Cómo se puede contrarrestar dicha deficiencia? Aplicando por ejemplo un quelato de Manganeso EDTA eficaz y estable, micro gránulo de alta solubilidad, con estabilidad de pH de 4 a 9 y un alto grado de quelación.

El manganeso (Mn) es un importante micronutriente para las plantas y, después del hierro, es el que las plantas requieren en mayor cantidad. Al igual que sucede con cualquier otro elemento, su deficiencia o su toxicidad pueden representar una limitante para el desarrollo de las plantas. En varias formas se asemeja al hierro, por lo que su deficiencia o su toxicidad suelen ser confundidas con las de éste.

manganeso
Función

Respecto a las plantas, es uno de los elementos que más contribuyen al funcionamiento de varios procesos biológicos incluyendo la fotosíntesis, la respiración y la asimilación de nitrógeno. También interviene en la germinación del polen, el crecimiento del tubo polínico, el alargamiento celular en la raíz y la resistencia a patógenos de la misma.

Deficiencia
Los síntomas de deficiencia de manganeso, que a menudo se asemejan a los de la deficiencia de hierro, son: clorosis intervenal (hojas amarillas con venas verdes) en las hojas jóvenes y, en ocasiones, manchas bronceadas hundidas en las áreas cloróticas intervenales.

También el crecimiento de las plantas puede verse disminuido y retrasado. La deficiencia de manganeso puede surgir cuando el pH del sustrato de cultivo es superior a 6,5, pues dicho elemento es fijado y pierde disponibilidad para su absorción.

Asimismo, la deficiencia puede presentarse debido a bajos índices de aplicación de fertilizante, al empleo de fertilizantes para usos múltiples (cuyo contenido de micronutrientes normalmente es menor), a la lixiviación excesiva o a demasiadas aplicaciones de quelato de hierro.

Toxicidad

La toxicidad del manganeso comienza con la quemadura de las puntas y los bordes de las hojas más viejas; o bien con la aparición de manchas de color rojizo a castaño en ellas. Cuando la toxicidad es severa, las manchas pueden aumentar en número y en tamaño formando parches en esas mismas hojas.

Con niveles de pH por debajo de 5,5, el manganeso se vuelve altamente soluble y es probable que las plantas muestren síntomas de toxicidad.

Esto ocurre particularmente con el geranio zonal, la caléndula, el lisianthus y la impatiens de Nueva Guinea. La toxicidad del manganeso ocurre cuando el índice de aplicación de fertilizante es excesivo.

manganeso

Similitudes con el hierro
El manganeso y el hierro están íntimamente vinculados. El manganeso compite con el hierro y, en menor grado, con el zinc, el cobre, el magnesio y el calcio para ser absorbido por la planta. Para obtener mejores resultados, mantenga el índice; tanto del manganeso como del hierro en 1:2 y realice pruebas en el sustrato de cultivo para comprobar que el pH; así como los niveles de todos los nutrientes, se encuentre dentro del rango de lo normal.

El manganeso y el hierro muestran síntomas similares en cuanto a deficiencia y toxicidad. Respecto de ambos minerales, la deficiencia se manifiesta como clorosis intervenal de las hojas jóvenes.

La diferencia principal consiste en que, en el caso del manganeso, aparecen áreas bronceadas entre las venas; y en el del hierro, las hojas se vuelven casi blancas. En cuanto a la toxicidad, provenga ésta del hierro o del manganeso, sus síntomas son idénticos, por lo que es difícil distinguirlos.

Es imposible hacer conjeturas e implementar medidas correctivas sin pruebas de laboratorio que confirmen una deficiencia de manganeso. Ante la sospecha de algún problema relativo al manganeso (o al hierro); lo más prudente será analizar tanto el sustrato como el tejido de las plantas -normales y anormales-; así como la solución nutritiva que se esté aplicando. Esta es la única forma de comprobar la presencia de toxicidad o deficiencia de manganeso.

Dónde encontrar manganeso

En la mayor parte de los sustratos de cultivo que se encuentran en el Mercado se incluye un paquete de nutrientes iniciadores que contiene manganeso y otros micronutrientes esenciales; sin embargo, sólo cubrirá los requerimientos del cultivo durante una semana, aproximadamente.

Una alimentación constante con fertilizantes completos solubles en agua es la mejor manera de asegurarse de que todos los micronutrientes esenciales; comprendido el manganeso, serán recibidos en la proporción correcta. Analice su agua antes de la temporada de producción y pida la opinión del fabricante de fertilizantes acerca de los productos necesarios para realzar su calidad.

Algunas fuentes de este líquido contienen manganeso, aunque rara vez el suficiente para satisfacer las necesidades de un cultivo.

Fuente: tradecorp.com y pthorticulture.com

Compartir:
Compartir:

En este artículo vamos a tratar de informar acerca de los componentes minerales que deben formar parte de la nutrición de los frutales, y partir de esto, intentar conocer las carencias nutricionales a partir de una inspección visual.

Condiciones esenciales para la nutrición de los frutales. Deficiencias minerales en los frutales

En las plantas podemos encontrar más de 100 elementos, pero sólo se consideran esenciales algunos de ellos. Estos minerales se clasifican de la siguiente manera.

Macroelementos: 99% (C: 40-50 %, O: 42-44%, H:6-7 %)

Primarios: N, P, K.

Macroelementos secundarios: Ca, Mg, S

Microelementos esenciales: Fe, Mn, B, Zn, Cu, Mo, Cl.

Funciones de los elementos nutritivos

Importancia del boro en la nutrición de los frutales

 

Este elemento participa en el desarrollo del tubo polínico y de las flores.

En los frutales la deficiencia es excepcional, y puede deberse al alto contenido de su antagonista, Ca.

Importancia del calcio

El calcio es abundante en las hojas y aumenta con la edad. También está presente en la corteza. Es una carencia que se presenta únicamente en suelos muy ácidos, por lo que la solución correspondiente es reducir esa acidez con encalados (CaO o cal viva, cal apagada, yeso, etc.).

Importancia del magnesio

Es un componente importante de la clorofila y en el abonado de frutales, y se encuentra en órganos en desarrollo como las yemas florales en formación. Contribuye en la formación de proteínas y posee gran movilidad en la planta.

Importancia del zinc

Se le asocia a la síntesis del ácido indolacético (AIA). La carencia de este elemento se soluciona con aplicaciones de sulfato de zinc en riego y en aplicaciones foliares.

Importancia del cobre

Su papel se considera semejante al del elemento anterior ZINC.

Importancia del azufre nutrición de los frutales

La carencia de azufre suele ser muy rara, ya que al realizar el abonado de frutales, ya se realiza enmiendas indirectas de este mineral. Es un compuesto clave en la regulación de vías metabólicas y en la activación de ácidos orgánicos.

nutrición de los frutales

Importancia del fósforo

Su carencia produce retrasos en el crecimiento, fecundación defectuosa, movimientos anormales de reservas, retrasos en la maduración, etc.

Importancia del potasio

Es el elemento que presenta mayor movilidad y solubilidad en los tejidos. Regula la absorción  de agua, transpiración, síntesis de hidratos de carbono, etc. Su carencia  restringe el desarrollo de brotes y retrasa la caída de la hoja en otoño.

Descubriendo las carencias en la nutrición de los frutales

En ocasiones, las carencias se pueden observar a simple vista, en otras hacen falta estudios de laboratorio y análisis foliares. Aquí vamos a comentar las principales carencias que puede aparecer en los cultivos.

Deficiencia de nitrógeno

Los cambios aparecen en las hojas viejas. Se ven hojas más claras de color verde pálido, que va tornándose amarillo, incluyendo las nerviaciones. El amarilleamiento de las hojas, aunque comienza por las hojas viejas, llega a toda la planta. Una forma de distinguir la carencia de hierro o clorosis férrica es observar que en este caso, la clorosis empieza por las hojas más jóvenes, al contrario de la carencia de nitrógeno.

Solución: aplicación de fertilizantes nitrogenados (nitrato amónico, nitrato cálcico, nitrato potásico, etc.)

Deficiencia de molibdeno

Interviene en el intercambio de N de los tejidos de las plantas. La presencia de esta carencia es poco frecuente, y en general presenta una clorosis que se inicia en las hojas adultas. Esta clorosis puede aparecer únicamente en los nervios de las hojas o aparecer necrosis en los bordes (con deformaciones en forma de enrollado)

Solución: en general, aumentar el pH (añadir basicidad al suelo) para que desbloquear el molibdeno.

Carencia de potasio

Los primeros indicios de carencia de potasio se observan en hojas viejas. Éstas presentan las puntas y los bordes de las hojas amarilleando para con el tiempo, secarse. En algunos casos se observa enrojecimiento de  las hojas jóvenes. A partir de aquí se afecta el crecimiento del cultivo, la fructificación y la floración.

Solución: uso de fertilizantes con contenido en potasio (ClK, sulfato de potasio, nitrato de potasio, fosfato monopotásico) en riegos y aplicación foliar de sulfato de potasio al 2%.

Carencia de fósforo en la nutrición de los frutales

La  carencia de este mineral se presenta en sus inicios en las hojas inferiores, que corresponde a las más viejas. La coloración de las hojas se inicia con una tonalidad verde oscura que se torna rojiza hasta secarse.

Con el tiempo, disminuye el tamaño de las hojas y se produce un adelgazamiento de brotes y tallos.

Solución:  abonado de fertilizante de base fosfórica en el interior del suelo (a partir de 10 cm) para facilitar el acceso a raíces, ya que este elemento presenta poca movilidad.

Carencia de hierro

La carencia de hierro (clorosis férrica) es una de las más conocidas. La primera manifestación se inicia en las hojas jóvenes, con una coloración amarillenta de la hoja exceptuando los nervios. El progreso de esta carencia termina por amarillear la hoja por completo y se extiende a las hojas adultas. Se puede distinguir de otras clorosis debido a que el cultivo presenta esta anomalía de forma no uniforme.

Solución: el origen de esta carencia puede deberse en gran medida a un pH alto del suelo. Una solución temporal para mejorar el cultivo es la aplicación de fertilizantes de quelato de hierro, pero si el suelo es básico el problema surgirá de nuevo, por lo que es conveniente acidificar el suelo (turba ácida, ácido cítrico, quelatos de hierro, etc.).

Deficiencia de manganeso

La carencia de manganeso se manifiesta en las hojas y el síntoma más notable es una clorosis ya que este elemento juega un papel fundamental en la fotosíntesis. Se inicia en las hojas jóvenes.  Cuando la carencia es grave, las hojas nuevas emergen con pecas y estrías en toda su extensión. Si bien el estriado se presenta entre las nervaduras, difiere del provocado por la carencia de Fe por su irregularidad y por la aparición de pecas.

Solución: La aparición de esta deficiencia se debe sobre todo a suelos calizos (pH alto) ya que se disminuye la solubilidad y absorción de este mineral. También puede aparecer en suelos con textura gruesa, como los arenosos Se suele aplicar quelatos de manganeso sobre el riego o pulverizado sobre las hojas, además de otros fertilizantes comerciales como sulfato de manganeso, cloruro de manganeso, nitrato de manganeso.

Carencia de Zinc en la nutrición de los frutales

La carencia de zinc se manifiesta en las hojas jóvenes, produciéndose un moteado clorótico. En cítricos aparecen bandas irregulares a lo largo de los nervios principales, sobre el fondo de la hoja que se torna amarillo blanquecino.

El crecimiento de los brotes se detiene y la planta adquiere un aspecto en forma de roseta. En el estado final de la enfermedad las ramas se necrosan y mueren desde las puntas. Las plantas con afectación grave dejan de producir frutos, o bien estos son pequeños y muy amargos al sabor.

Solución: La aparición de esta deficiencia está condicionada por el cultivo en suelos calizos, deficientes en materia orgánica o muy erosionados, suelos muy cultivados. Cuando se denote el inicio de esta carencia se actúa con quelatos de Zinc o sulfato de Zinc.

Carencia de azufre

La deficiencia de azufre, aunque son casos muy raros presenta las siguientes características. La planta sufre clorosis generalizada que incluye los haces vasculares. Suele darse en hojas jóvenes en sus inicios, ya que el azufre presenta poca movilidad.

En general presentan un crecimiento reducido, debilitándose los tallos y haciéndose más quebradizos. Pueden presentarse defoliaciones en algunos cultivos. A medida que evoluciona la carencia de este mineral las hojas se tienden a arrugarse.

Solución:  cualquier compuesto sulfatado de los que se mencionan anteriormente.

Compartir:
Compartir:

El cambio climático mundial es resultado del aumento de las emisiones de gases de efecto invernadero inducidos por la acción humana. Esta modificación global del clima afectará severamente diversos sectores, se espera que el incremento de las temperaturas provoque escasez de agua e inundaciones. Se estima que muchas poblaciones de animales y plantas puedan reducirse en tamaño, debido a las altas temperaturas y a las menores precipitaciones, lo que limitará la disponibilidad de fuentes alimentarias esenciales para la nutrición del ser humano.

Las alteraciones generadas por el cambio climático afectarán seriamente la agricultura a nivel mundial. El calentamiento global ocasionará que se produzca una disminución en los rendimientos de los cultivos, debido a las crecientes temperaturas y a las menores precipitaciones, lo que a su vez agudizará la inseguridad alimentaria.

Durante la cumbre del cambio climático (COP21), celebrada en París entre el 28 y 30 de noviembre de 2015, México, junto a otras 194 naciones, refrendaron su compromiso para fortalecer el modelo de producción económica sustentable, estableciendo un acuerdo para reducir en al menos un 30% las emisiones de gases de efecto invernadero para el año 2020.

Huella de carbono

En ese sentido, las actividades productivas desarrolladas en el país, como en cualquier otra parte del mundo, en la medida en la que utilizan energía a lo largo de sus cadenas de valor, son responsables de una cantidad significativa de emisiones de gases de efecto invernadero a la atmósfera. La agricultura no es una excepción, ya las prácticas agrícolas actuales son responsables de la emisión de más del 30% del total de gases de efecto invernadero producidos globalmente. La suma de esas emisiones de gases es lo que se denomina huella de carbono.

La agricultura juega un importante papel en el balance de los tres gases de efecto invernadero más significativos; dióxido de carbono (CO2), óxido de nitrógeno (N2O) y metano (CH4). Particularmente, las emisiones de N2O están relacionadas con el manejo del suelo y el uso de fertilizantes nitrogenados.

El óxido nitroso absorbe radiación infrarroja de la atmósfera contribuyendo al efecto invernadero, siendo actualmente el responsable del 5% del calentamiento global y pudiendo llegar hasta valores del 10% en el futuro cercano.

Las emisiones de N2O se ven muy influenciadas por la humedad, temperatura, contenido de carbono, nitrógeno del suelo y tipo de fertilizante. En general, se producen menos emisiones de N2O cuando el contenido de materia orgánica es menor, por ello, la aplicación de compostas y otros biofertilizantes favorecen la emisión de este gas invernadero.

Además, el nitrógeno aplicado el suelo a través de fertilizantes salinos tiene un índice de asimilación muy bajo por las plantas. Del total de fertilizante que se aplica al suelo, dependiendo del manejo y del tipo de fertilizante aplicado, más del 50% (hasta el 80%) es perdido por la lixiviación.
El nitrógeno se pierde también por la volatilización de los gases que se producen en el suelo, amonio, óxido nítrico y óxido nitroso.

Por otro lado, los fertilizantes orgánicos pueden provocar impactos ambientales negativos si no existe un control en el almacenamiento, el transporte o la aplicación, debido a la emisión de gases contaminantes hacia la atmósfera, y la acumulación de metales pesados en el suelo y en los cuerpos hídricos superficiales.

Es importante que los productores agrícolas se aseguren de que el tipo, la cantidad y el tiempo de aplicación del nitrógeno no resultara en una pérdida significante por desnitrificación, volatilización o lixiviación. Una buena estructura en el suelo mejora la eficacia en el uso del nitrógeno y reduce las pérdidas de N2O. Optimizar la eficiencia de nitrógeno es la clave para mantener y hasta incrementar la productividad y las ganancias del campo.

Agricultura sostenible

El manejo inadecuado de los agroecosistemas con fines de uso agrícola, ha originado en mayor o menor medida cambios y deterioro de las propiedades físicas, químicas y biológicas del suelo, con el consiguiente efecto de disminución sobre la productividad y la producción en general. Por lo anterior, resulta crítico contar con prácticas de agricultura sostenible que, además de reducir el impacto de la agricultura en el medio ambiente, mejoren el rendimiento de los cultivos.

La fuente de fertilizantes y el manejo del cultivo pueden afectar las emisiones de N2O.
Los fertilizantes de liberación controlada y estabilizados son productos que minimizan el potencial de pérdidas de nutrientes al ambiente, cuando se comparan con los fertilizantes salinos convencionales. Los fertilizantes que no se evaporan ni se lixivian deben ser preferentemente utilizados. Sus beneficios para reducir las emisiones de N2O son una alternativa a corto plazo para disminuir el daño ecológico generado por la actividad agrícola.

En este sentido, la nutrición vegetal basada en el uso de coloides amfífilos enantiomórficos permite trasladar los nutrientes desde el medio externo que sustenta la planta (suelo u otro sustrato), y transportarlos de forma precisa hasta el nivel intracelular de las células de los tejidos y órganos donde la planta los requiera.

Con base a ello, se pueden suministrar nutrientes en la forma y cantidades necesarias para acelerar o desacelerar procesos vegetativos o productivos, ya que la tecnología basa en coloides amfífilos posibilita aplicar nutrientes miles de veces más pequeños que las partículas de fertilizantes químicos, lo que convierte a los nutrientes aplicados en ultra-asimilables, y que además no generan efectos adversos al suelo, reduciendo así el deterioro del terreno agrícola.

La tecnología de los coloides amfífilos eficientizan el suministro de nutrientes a las plantas, disminuyendo las emisiones de gases de efecto invernadero y pérdidas por lixiviación, al volver los micro y macro nutrientes en sustancias ultra-asimilables, lo cual permite aplicar sólo la cantidad de fertilizante que la planta requiere.

Esta tecnología para la nutrición vegetal es totalmente amigable con el medio ambiente, debido a que utilizan las cantidades adecuadas de nutrientes en función de la actividad metabólica de las plantas. Esto proporciona un 100% de integración asimilativa de los nutrientes al tejido vivo, tanto vegetativo como generativo. En contraste con los métodos de fertilización salina u orgánica.

Fuente: www.hortalizas.com

Foto de portada: www.valleybolivia.com

Compartir: