Compartir:

Boundary Layer está trabajando en una serie de embarcaciones de hidroala propulsadas eléctricamente, ágiles y rápidas de cargar, con el objetivo de reducir a la mitad el costo del flete aéreo tradicional, a velocidades comparables.

Boundary Layer Technologies quiere liderar un gran cambio en el transporte marítimo. Los buques de carga de bajas o nulas emisiones están a punto de surcar los mares, reduciendo la contaminación por carbono y ofreciendo alternativas al costoso y contaminante transporte aéreo.

Empresas emergentes como Boundary Layer, cuyos buques utilizan energía de hidrógeno y tecnología de hidroalas, y B9 Shipping, que es pionera en buques propulsados por biogás y energía eólica, tratan de reducir el impacto negativo de las operaciones de transporte marítimo internacional sobre el clima.

En 2021, el sector del transporte marítimo internacional fue responsable aproximadamente el 2% del total de la contaminación mundial. La Agencia Internacional de la Energía clasifica al sector del transporte marítimo como «No bien encaminado» para cumplir su «Escenario Cero Neto para 2050». Para ir por buen camino, el sector tendría que mantener sus niveles actuales de contaminación hasta 2025 (a pesar de las expectativas de que los superará), y luego reducirlos un 15% de 2025 a 2030.

Puede parecer una tarea titánica, pero ahí es donde entran en juego empresas como Boundary Layer.

La empresa tecnológica estadounidense Boundary Layer afirma que sus hidroplanos propulsados por hidrógeno, como el ARGO, pueden ser tan rápidos como el transporte aéreo de puerta a puerta a un 50% del coste, todo ello sin producir contaminación por carbono.

Boundary Layer ya ha reclutado a varias empresas como socios de lanzamiento de ARGO, entre ellas Schneider Electric, una de las 500 empresas de Fortune, que, según Boundary Layer, «ha firmado acuerdos para el transporte de mercancías y recibirá los primeros derechos para bloquear el espacio cuando esté disponible«.

No están compitiendo con los portacontenedores. Están reemplazando el flete aéreo.

Por supuesto, un avión volará más rápido que un barco navegando en el mar todos los días de la semana, pero Boundary Layer cree que la alta velocidad y el uso de contenedores estándar lo hacen competitivo. El quid de la cuestión es que el transporte en contenedores puede hacer que el envío sea un orden de magnitud más eficiente. Un fabricante en Taiwán puede llenar un contenedor de 20 o 40 pies con lo que necesite para enviar, ponerlo en un camión, moverlo a uno de los barcos portacontenedores de alta velocidad de Boundary Layer, luego ponerlo en un camión en Corea del Sur y que lo entreguen a la planta de ensamblaje. Todo esto puede suceder sin descargar y volver a cargar el contenedor, que puede cerrarse y sellarse durante todo el viaje. Cuando se envía por vía aérea, incluso si las mercancías están en tarimas, la empresa afirma que existen importantes ineficiencias.

Fuente: boundarylayer.tech

Compartir:
Compartir:

Es algo de lo que nunca hemos hablado en Agromática y yo creo que ya va siendo hora. La agricultura de precisión es una rama de la agricultura que está en boca de todos. Sensores, satélites, datos en tiempo real, monitorización, big data, teledetección, drones, GPS, software SIG, imágenes multiespectrales, mapeo de suelos, índices agrónomicos… todo un mundo tecnológico al servicio de un sector, que posiblemente sea de los más lentos a la hora de implantar estos sistemas. Y la gran pregunta es: ¿Merece la pena? El tiempo lo dirá. De momento hagamos una breve introducción.

La precisión llega (al fin) a la agricultura
Todos los sectores productivos llevan años a la vanguardia de las nuevas tecnologías. El sector de la automoción, la industria alimentaria, la medicina, hace uso de las famosas TIC (tecnología de la información y la comunicación) para sacar mejores rendimientos, mejorar sus productos, ahorrar costes, reducir emisiones, salvar vidas (medicina)… Sin embargo, la agricultura, desde el salto a la maquinaria agrícola autopropulsada por motor de combustión, no había vivido una revolución tecnológica hasta el S.XXI con la agricultura de precisión.

¿Qué es agricultura de precisión?
Una definición extensa que se me ocurre sobre agricultura de precisión sería: Agricultura que hace uso de las TIC para la gestión de los cultivos obteniendo una gran cantidad de variables agronómicas que permitan un análisis más preciso de la situación del cultivo con el fin de optimizar al máximo los recursos, ahorrar costes, dosificar con gran precisión las aplicaciones de insumos (agua, fertilizantes, fitosanitarios…), sacar el máximo rendimiento y contribuir a la sostenibilidad de los sistemas agrícolas.

Quizá las haya más cortas, precisas y más o menos acertadas, pero así es como la entendemos en este blog. En resumen: es poner la tecnología de la información al servicio de agricultura para mejorarla, punto final.

¿Dónde está la barrera entre agricultura «convencional» y la llamada agricultura de precisión?
No resulta muy complicado hacer esta distinción. Como se ha mencionado un par de párrafos más arriba, una de las revoluciones tecnológicas del S.XX en este sector fue la maquinaria autopropulsada por el motor de combustión. Desde el primigenio tractor hasta las máquinas recolectoras más vanguardistas de hoy en día, no ha habido muchos más cambios —entiéndase cambios como algo de calado global; hablamos de revolución, no de evolución.

¿Podríamos decir que agricultura de precisión es tener una estación meteorológica en un cultivo, o usar la información de las ya existentes para analizar patrones de clima en nuestra parcela y actuar en consecuencia? En cierta manera sí, solo en cierta manera, y aunque esto se lleva haciendo mucho tiempo, nunca se llamó agricultura de precisión. El término ha cobrado más sentido cuando se han ido añadiendo una gran cantidad de capas de información, obtenidas de diversas fuentes. Además, haciendo uso de esas capas, se consigue que «el laboreo» se haga en consecuencia a esa información. Me explico:

Si mediante una imagen de satélite, sacando algún índice agronómico de su cámara multiespectral, conseguimos saber las necesidades de fertilización de un cultivo, ya no solo a nivel global, sino a nivel mucho más concreto, podremos aplicar una dosis de fertilizante variable según esos datos y ahorrar muuuuucho dinero en algo tan caro como un fertilizante. Esto sería una primera fase de la agricultura de precisión: La toma de datos, su análisis y la interpretación de los mismos.

Índice NDVI de un cultivo
Resulta evidente que estos resultados en forma de mapa de necesidades de fertilización deben ser interpretados por un software que lleve nuestra dosificadora para saber en cada momento, cuánto fertilizante echar según ese mapa. Todo ello guiado por GPS. Ahí ya, estamos consiguiendo la cuadratura del círculo y eso ya es agricultura de precisión seria. Esta fase sería una segunda fase: Toma de decisiones y ejecución en función de la primera fase .

Hay muchos más ejemplos pero hoy no es el día de entrar en ellos. Queremos dar una breve pincelada de todo esto para, en un futuro no muy lejano, meternos más en materia. A continuación comentaremos algunas de las técnicas que se aplican. En otros artículos posteriores nos meteremos a fondo en cada una de ellas.

¿Qué tecnologías hay?
Maquinaria de conducción autónoma guiada por GPS
En el ejemplo anterior es una de las tecnologías aplicadas al servicio de la agricultura, maquinaria que es capaz de cubrir una parcela según un plan preestablecido por el agricultor. El conductor, una vez en la parcela, sólo tiene que vigilar la telemetría del proceso para que todo vaya según el plan establecido. Y sí, hablo de telemetría, como en la Fórmula 1, la agricultura también tiene de eso hoy en día.

Imágenes de satélite y de drones
Las imágenes de satélite y de drones, son imágenes captadas por cámaras un poco especiales que sacan fotografías aéreas de los cultivos en espectros no visibles para el ojo humano, como el infrarrojo. Con los datos obtenidos de estas cámaras podemos conocer, por ejemplo, el estrés hídrico o el vigor de un cultivo y a partir de ahí tomar las decisiones pertinentes.

agricultura de precisiónLos hay de iniciativa pública como Landsat (NASA), los actuales Sentinel (ESA) y privados (Quickbird, Deimos, Wordlview…). Actualmente los de mayor resolución son privados y la adquisición de imágenes es cara. De todas formas, la Agencia Espacial Europea (ESA) ha lanzado este año 2 satélites multiespectrales de bastante resolución, con bastante aplicación en la agricultura de precisión, pudiendo llegar a una resolución de 10m/pixel que resulta más que suficiente para analizar ciertos cultivos, cereales por ejemplo. La adquisición de imágenes de Sentinel es totalmente gratuita.

Una curiosidad al margen de la agricultura de precisión

Nos creemos que tenemos unos pocos satélites volando alrededor del globo (el METEOSAT, los del GPS, los de Google Earth y pocos más verdad?) Aquí te dejo un enlace a una web para que veas la cantidad de satélites y restos de cohete y basura espacial orbitando alrededor del globo que está acumulando la humanidad. ¡Es impresionante!

El mundo del drone está despertando y va cogiendo fuerza. Son muy útiles para un montón de disciplinas y la agricultura no se queda corta. Drones con cámaras multiespectrales, térmicas, LiDAR… que nos permiten una precisión que por ahora es imposible que un satélite nos pueda dar. Además no tenemos el efecto de las nubes ni hay que hacer tantas correcciones como en la foto de satélite (por la distancia y las interferencias de la atmósfera en la imagen). A misma resolución son más baratos que un satélite privado y nos aseguramos siempre la máxima calidad de imagen. Los últimos drones son capaces de cubrir más de un centenar de hectáreas en un solo vuelo.

Sensorización en parcela
en realidad son estaciones meteorológicas (algo menos precisas que las que se utilizan para climatología) pero más baratas y específicas según nuestras necesidades. Sensores de humedad ambiental, temperatura ambiental, humedad y temperatura a distintos niveles de profundidad del suelo, pluviometría, dirección y velocidad del viento, radiación solar, humectación foliar, dendrómetros… un sin fin de parámetros que se pueden medir y almacenar en memorias que se vuelcan y sirven para estudiar estados del cultivo y su relación con variables agronómicas del cultivo, plagas, etc. Este tipo de información es muy útil para hacer predicciones de aparición de plagas, predicciones de estados fenológicos… ¿os acordáis del artículo de la integral térmica?; pues tiene mucho que ver.

Mapeo de suelo
Otra de las capas de información que podemos conseguir mediante una maquinaria específica. Este dispositivo se pasea por nuestra parcela y nos dice una gran cantidad de parámetros del suelo. El análisis de un suelo agrícola en laboratorio es caro y además son datos extraídos de un muestreo puntual en distintos puntos de parcela. Pero un suelo es mucho más complejo y cambiante de lo que parece y podemos tener mucha diferencia a 20 metros de distancia. Con estos mapas de suelo, tenemos información continua de toda la parcela con parámetros como pH, conductividad eléctrica, textura, macronutrientes principales (NPK).

agricultura de precisión sonda de suelo
Big Data
La computación en la nube, el análisis de Gigabytes e incluso Terabytes de datos. Todos estos datos que recogemos de los diferentes sensores, imágenes, cuadernos de campo. Toda, absolutamente toda la información es útil, y sobre todo si es mucha la cantidad, ya que algoritmos estadísitcos más y menos complejos son capaces de sacar patrones de comportamiento que nos ayudan a tomar decisiones acertadas en cuanto a: momento y dosis de aplicación de fertilizantes y fitosanitarios, predicciones de cosecha, predicción de heladas, necesidades de riego en tiempo real e incluso accionamiento del riego automático en función de todos estos análisis… todo un mundo.

¿Es una panacea tal y como nos la están vendiendo?
Pues como todo, tiene su aplicación a muchos niveles. Cada tipo de tecnología (mapeo de suelo, drones, sensores…) dan diferentes capas de información que pueden sernos más o menos útiles dependiendo de nuestro objetivo, tamaño y tipo de cultivo y necesidades de optimización. Es una nueva agricultura mucho más tecnificada y desde luego traerá mejoras, ahorros al agricultor y un beneficio global que es una agricultura más sotenible. Esta agricultura está pensada para medianas y grandes superficies, donde la optimización de recursos tiene un papel más que fundamental.

¿Podemos aplicar la agricultura de precisión a nuestro huerto o jardín?
Ajá! Como sabemos que muchos de nuestros lectores tienen pequeños huertos de autoconsumo, esta es una gran pregunta que tiene una ambigua respuesta. La primera es NO. No vamos a pasar un vuelo de drone por nuestra huerta, ni haremos un mapeo de suelo de una parcela de unos pocos cientos de metros cuadrados.

agricultura de precisión sensor de lluviaLa otra respuesta es SI!, por supesto podemos sensorizar ligeramente un jardín o un huerto y eso sí podría ser introducir un poco de precisión en el manejo de nuestros cultivos o plantas ornamentales. Os ponemos un pequeño ejemplo:

Riego con aspersores en jardín y goteo en el huerto, gobernado por un programador de riego que lleva una sonda de humedad o sensor de lluvia y sólo regará días después de haber llovido o cuando la humedad del suelo caiga por debajo de un límite. ¡Ahí tienes agricultura de precisión en tu pequeño jardín!

Compartir:
Compartir:

El proyecto, que comenzó su fase de diseño y conceptualización en 2020, cuenta con el apoyo y financiación del CDTI (Centro para el Desarrollo Tecnológico Industrial) y el Ministerio de Ciencia e Innovación.

Durante dos años se ha llevado a cabo el estudio y desarrollo de este nuevo modelo arquitectónico denominado Vertical Sunning, con un diseño solar pasivo que utiliza estrategias inteligentes de luz y agua para maximizar la eficiencia del sistema.

“Para concebir la estructura, hemos utilizado novedosas tecnologías de Ray Tracing que buscan optimizar la captación de radiación PAR, y homogeneicen la distribución de la luz a los cultivos que estarán situados en su interior”, afirma Juan Pardo, responsable de Innovación en Novagric y manager del proyecto.

El cultivo de alimentos indoor ha ido evolucionando, pero la inversión en las instalaciones sigue siendo elevada, hasta el punto de que numerosas investigaciones ponen de relieve la necesidad de reducir los gastos de explotación para aumentar su rentabilidad. El proyecto I+D+i Vertical Sunning pretende resolver este punto crítico de los módulos de Vertical Farming actuales: el elevado coste energético.

“Nuestro objetivo era el desarrollo de un nuevo modelo de producción de alimentos en vertical sin iluminación artificial, que priorice el acceso y distribución de la radiación solar, con sistemas de climatización de bajo consumo energético y utilizando el agua y la luz solar como base para reducir la huella de carbono”, explica Juan Pardo.

El prototipo construido se encuentra en las instalaciones tecnológicas de Novagric, en Alhama de Murcia, y está en plena producción.

El modelo constructivo utiliza materiales modulares y ligeros en forma de racks móviles que se desplazan para aprovechar el espacio, variando la disposición de los cultivos siguiendo la trayectoria de la luz del sol.

Para minimizar el consumo energético de refrigeración, se utiliza el agua que aprovecha su capacidad de filtro óptico para absorber la radiación infrarroja y permitir el acceso de la PAR, a la vez que se reduce el calentamiento de la envolvente y se distribuye el calor al interior.

El sistema de riego es mediante hidroponía, reduciendo hasta un 50% el consumo de agua frente a otros sistemas de riego en cultivos en sustrato.

Actualmente se encuentran en fase de estudio técnico-agronómico, donde se validará el diseño en entorno de cultivo real. Gracias al gran volumen de cultivo disponible, además de especies de hoja y aromáticas, se han introducido también nuevas variedades más complejas y poco habituales en sistemas de cultivo vertical para resolver el reto de la productividad en estos entornos.

Con esto, se cumplirían los tres objetivos de Novagric para el desarrollo de nuevas tecnologías y estrategias competitivas para producción de cultivos: utilización del sol como fuente de energía, reducción del consumo energético y la introducción de nuevas especies de cultivo para ampliar la gama de vegetales disponibles en este sistema productivo, concluye Pardo.

Fuente: novagric.com

Compartir:
Compartir:

Algunas de las formas más innovadoras de mejorar las prácticas agrícolas están relacionadas con la tecnología y la energía nuclear en la agricultura. El empleo de isótopos o técnicas de radiación en la agricultura puede controlar las plagas y enfermedades, aumentar la producción de los cultivos, proteger los recursos de tierras y aguas y garantizar la inocuidad de los alimentos.

 La FAO y el Organismo Internacional de Energía Atómica (OIEA) han venido ampliando sus conocimientos y potenciando la capacidad en este ámbito durante más de 50 años y, recientemente, han reforzado esta asociación creando el Centro Conjunto FAO/OIEA (Técnicas Nucleares en la Alimentación y la Agricultura).

A continuación se señalan cinco ejemplos de cómo la FAO y el OIEA están mejorando la agricultura y la seguridad alimentaria:

1. Sanidad animal

Las tecnologías nucleares han supuesto una gran diferencia en la detección, el control y la prevención de enfermedades animales y zoonóticas transfronterizas.

En Belice, los funcionarios veterinarios solían enviar muestras a laboratorios extranjeros para detectar brotes de enfermedades. Sin embargo, la Autoridad de Sanidad Agrícola de Belice se asoció con el Centro Conjunto FAO/OIEA para establecer su propio laboratorio de diagnóstico molecular de enfermedades animales.

Con el equipo y la capacitación adecuados; los técnicos de laboratorio realizaban pruebas de reacción en cadena de la polimerasa en tiempo real, una técnica nuclear molecular, para detectar enfermedades rápidamente.

Con estos diagnósticos rápidos y precisos; informaban a los trabajadores sobre el terreno para que pudieran adoptar las medidas oportunas para controlar con prontitud la enfermedad.

Actualmente, las pruebas de reacción en cadena de la polimerasa se utilizan de forma generalizada para detectar enfermedades animales en menos de un día. Debido a esta competencia, las autoridades sanitarias de Belice pidieron recientemente a este laboratorio que les ayudara a realizar pruebas de reacción en cadena de la polimerasa para la enfermedad por coronavirus (COVID-19) en humanos; un buen ejemplo de que ocuparse de las amenazas a la sanidad animal también puede contribuir a mejorar la salud de las personas.

Esto forma parte del enfoque “Una salud” de la FAO, que reconoce que la salud de los animales, las personas, las plantas y el medio ambiente están interrelacionadas y que las soluciones pueden ser transversales.

la energía nuclear en la agricultura

2. Mejora de la gestión del suelo y el agua

Aunque sea difícil de imaginar, los residuos nucleares generados en el pasado están ayudando a los científicos. En lo que respecta a la medición y la evaluación de la erosión del suelo, los nucleidos radiactivos que se generan a raíz de actividades nucleares pueden ayudar a los científicos a determinar el estado de salud y la velocidad de la erosión de los suelos.

Esta técnica se aplicó al cultivo de soja, que en el pasado se había considerado un cultivo secundario en Benin. Los científicos de la Universidad de Abomey-Calavi y el Instituto Nacional de Agronomía de Benin, trabajando con el Centro Conjunto FAO/OIEA, introdujeron un isótopo nuclear en el suelo para medir la calidad del mismo y hacer el seguimiento.

Determinaron las bacterias específicas necesarias para mejorar las condiciones del suelo para el cultivo de soja en Benin y recomendaron que se añadiera al suelo un fertilizante marcado con isótopos estables de nitrógeno-15 y que se hiciera un seguimiento de la absorción del fertilizante y la salud del suelo.

De esta forma; se puede determinar la eficiencia con que los cultivos utilizan el biofertilizante y la cantidad de nitrógeno que capturan de la atmósfera; y ajustar la cantidad necesaria de fertilizante. Los agricultores de Benin vieron aumentar la producción de soja de 57 000 toneladas en 2009 a 220 000 toneladas en 2019.

la energía nuclear en la agricultura

3. La gestión de plagas de insectos

La técnica del insecto estéril, derivada de la tecnología nuclear; es un método respetuoso con el medio ambiente que se emplea para gestionar las plagas de insectos. Consiste en criar grandes cantidades de insectos, esterilizarlos con radiaciones ionizantes y liberarlos en zonas infestadas por plagas.

La técnica reduce la reproducción y elimina o erradica las plagas de insectos establecidas. Asimismo, puede evitar la proliferación de especies invasivas y es mucho más inocua para el medio ambiente y la salud de las personas que aplicar insecticidas convencionales.

El Ecuador utilizó la técnica del insecto estéril para erradicar la mosca de la fruta, una de las plagas agrícolas más dañinas del mundo, de las zonas de cultivo de tres especies de frutas. Con objeto de exportar estos productos, los productores deben demostrar que esta mosca no está presente en sus explotaciones.

Cada semana, con el apoyo del Centro Conjunto FAO/OIEA, el Ecuador importa tres millones de moscas de la fruta estériles y las libera en zonas seleccionadas para que se apareen con las hembras silvestres. Con esta técnica de gran eficacia, el Ecuador ha seguido exportando estas especies de frutas a los Estados Unidos de América; por un valor que solo en 2019 fue de 22 millones de USD.

4. Inocuidad y control de los alimentos

Las técnicas nucleares pueden mejorar el control de la inocuidad y la calidad de los alimentos gracias a la detección o eliminación de residuos y contaminantes nocivos presentes en los productos alimentarios.

La radiación ionizante aplicada a los alimentos, por ejemplo, puede matar los microbios potencialmente dañinos y evitar así enfermedades transmitidas por alimentos. La irradiación de alimentos también impide la propagación de plagas de insectos y se emplea para garantizar el comercio de frutas y hortalizas a través de las fronteras que exigen una ; una aplicación comercial en rápido crecimiento.

Con el apoyo de la FAO y la OIEA, un grupo de expertos en Viet Nam empezó a estudiar la irradiación de alimentos a finales de la década de 1990; actualmente, el país acoge 11 centros dedicados a este fin. La radiación gamma es más más utilizada y permite tratar alrededor de una tonelada de fruta por hora. El año pasado; en Viet Nam se irradiaron 200 toneladas de media de frutas frescas a la semana para la exportación utilizando rayos gamma y rayos X.

la energía nuclear en la agricultura

5. Fitomejoramiento y fitogenética

La tecnología nuclear empleada en el mejoramiento de cultivos puede ayudar a obtener variedades de cultivos mejoradas que se adapten mejor al cambio climático y ayuden a los países vulnerables a garantizar su seguridad alimentaria y nutricional.

Las semillas se pueden irradiar con rayos gamma, rayos X y haces de iones o electrones para inducir cambios genéticos. Este aumento de diversidad permite elegir entre un mayor número de técnicas de mejoramiento. Las variedades de cultivos resultantes pueden tener mejor rendimiento y calidad; mayor tolerancia a la sequía, el calor o las inundaciones; mejor resistencia a las plagas y enfermedades, o ciclos de crecimiento más cortos.

Aplicación en Sudán

En el Sudán, el Corporación de Investigación Agrícola del país, respaldada por el Centro Conjunto FAO/OIEA, obtuvo una variedad de maní resistente a la sequía. Este maní puede crecer con tan solo 250 milímetros de lluvia al año, a diferencia de las variedades tradicionales, que necesitan 350 milímetros.

Su rendimiento es un 27 % superior al de las variedades tradicionales; lo que allana el camino para que el Sudán vuelva a ser el principal productor de maní; y pueda mejorar la seguridad alimentaria en el país y ayudar a la economía.

Las tecnologías innovadoras elaboradas y aplicadas a través del Centro Conjunto FAO/OIEA están conllevando una nutrición, una producción, un medio ambiente y una vida mejores. Las tecnologías nucleares tienen muchas probabilidades de ayudarnos a hacer frente a los desafíos mundiales presentes y futuros.

Fuente: fao.org

Compartir:
Compartir:

Robot que poda en invernaderos: La manipulación de los cultivos es una parte importante de las operaciones diarias en los invernaderos. Sin embargo, el personal cualificado y remunerado es cada vez más escaso, mientras que la demanda mundial de alimentos sigue creciendo a un ritmo acelerado.

La robótica ofrece una solución al aumentar la continuidad y la previsibilidad de las operaciones diarias, manteniendo los costes a un nivel similar o incluso inferior.

Robot que poda en invernaderos

Robot que poda en invernaderos las 24 horas del día.

Kompano, el robot de poda 100% automatizado que trabaja las 24 horas del día.

La empresa holandesa Priva ha presentado Kompano, su primer robot en el mercado que puede moverse por el invernadero de forma segura e independiente mientras trabaja junto a otros empleados.

La empresa pretende revolucionar el mercado de la horticultura con un robot para poda totalmente autónomo. Diseñado para deshojar tomateras en invernaderos, Kompano es un robot alimentado por baterías que puede funcionar las 24 horas del día.

Robot que poda en invernaderos

Kompano cuenta con una batería de 5 kWh, pesa casi 425 kg y mide 191 cm de largo, 88 cm de ancho y 180 cm de alto.

Su brazo patentado y sus algoritmos inteligentes garantizan una eficacia superior al 85% en un alcance semanal de 1 hectárea. El robot cortador de hojas se controla fácilmente mediante un dispositivo inteligente y se ajusta a las preferencias y necesidades de los usuarios.

Según la empresa, es el primer robot del mundo que ofrece a los usuarios una alternativa económicamente viable para deshojar los cultivos de tomate a mano. Facilita a los productores la gestión de su mano de obra.

Robot que poda en invernaderos estará disponible en el mercado.

Desarrollado en colaboración con MTA, destacados cultivadores holandeses, socios tecnológicos y expertos, Kompano se presentó a finales de septiembre en el evento GreenTech y ya está listo para su uso en el mercado.

El robot ya se ha probado con éxito en varios invernaderos de los Países Bajos. Una serie de 50 robots está en producción en MTA y está disponible para su compra en la página web de Priva, aunque no hay información sobre el precio de la máquina.

Con el tiempo, la línea Kompano se ampliará con un robot de corte de hojas para pepinos y robots de recolección para tomates y pepinos.

Video del robot que poda en invernaderos las 24 horas del día.

Fuente: ecoinventos.com

Compartir:
Compartir:

Los científicos han desarrollado la fotosíntesis artificial como medio para producir alimentos sin necesidad de la fotosíntesis orgánica.

 Fotosíntesis artificialFotosíntesis artificial

 

El proceso convierte el agua, la energía y el dióxido de carbono en acetato a lo largo de dos pasos electrocatalíticos.

Después, en la oscuridad, los organismos que producen alimentos utilizan el acetato. La conversión de la luz solar en alimento podría ser hasta 18 veces más eficiente con el sistema híbrido orgánico-inorgánico.

Durante millones de años, la fotosíntesis se ha desarrollado en las plantas para convertir el agua, el dióxido de carbono y la energía solar en biomasa vegetal y en los alimentos que consumen los humanos.

Sin embargo, este mecanismo es increíblemente ineficiente, ya que sólo el 1% de la energía de la luz solar llega realmente a la planta.

Al adoptar la fotosíntesis artificial, los investigadores de las universidades de Delaware y Riverside han descubierto un medio para producir alimentos sin el requisito de la fotosíntesis biológica.

Proceso electrocatalítico

 

El estudio utilizó un proceso electrocatalítico de dos pasos para transformar el CO2, la energía y el agua en acetato, que es la forma química del ingrediente principal del vinagre.

Luego, en la oscuridad, los organismos que producen alimentos utilizan el acetato. Este sistema híbrido orgánico-inorgánico podría mejorar la eficiencia de la conversión de la luz solar en alimentos, hasta 18 veces más eficiente para algunos cultivos, cuando se combina con paneles solares para crear la electricidad que alimenta la electrocatálisis.

Con nuestro enfoque esperábamos descubrir un medio novedoso de fabricar alimentos que pudiera romper las restricciones impuestas por la fotosíntesis biológica, Robert Jinkerson, profesor adjunto de Ingeniería Química y Medioambiental de la Universidad de California en Riverside.

La salida del electrolizador se ajustó para ayudar al crecimiento de los organismos productores de alimentos con el fin de unir todas las partes del sistema.

 Fotosíntesis artificial

Electrolizadores

 

Los electrolizadores son máquinas que utilizan la electricidad para transformar sustancias químicas y productos inutilizables, como el CO2, en recursos básicos. Las mayores cantidades de acetato generadas en un electrolizador hasta la fecha se consiguieron aumentando la cantidad de acetato producido y reduciendo la cantidad de sal utilizada.

Fuimos capaces de obtener una alta selectividad hacia el acetato que no se puede alcanzar con las vías tradicionales de electrólisis de CO2 utilizando un montaje de electrólisis de CO2 en tándem de última generación construido en nuestro laboratorio, Feng Jiao, Universidad de Delaware.

Los experimentos revelaron que una variedad de especies productoras de alimentos, incluidas las algas verdes, la levadura y el micelio de hongos que produce setas, pueden cultivarse en la oscuridad directamente en la salida del electrolizador rica en acetato.

Con este método, la producción de algas es unas cuatro veces más eficiente desde el punto de vista energético que su cultivo por fotosíntesis. Cuando se utiliza el azúcar del maíz en lugar de los métodos de cultivo tradicionales, la producción de levadura es unas 18 veces más eficiente desde el punto de vista energético.

 Fotosíntesis artificial

Fotosíntesis biológica

Sin ninguna ayuda de la fotosíntesis biológica, hemos sido capaces de desarrollar criaturas que producen alimentos. Estas criaturas suelen crecer con azúcares vegetales o ingredientes derivados del petróleo, que son subproductos de la fotosíntesis biológica que se produjo hace millones de años.

En comparación con la producción de alimentos que depende de la fotosíntesis biológica, esta técnica es una forma más eficaz de convertir la energía solar en alimentos, Elizabeth Hann, estudiante de doctorado del laboratorio Jinkerson.

También se estudió si esta técnica podría utilizarse para cultivar. Cuando se cultivaron en la oscuridad, el caupí, el tomate, el tabaco, el arroz; la colza y el guisante verde fueron capaces de utilizar el carbono del acetato.

Descubrimos que diversos cultivos eran capaces de convertir el acetato que les dábamos en los componentes moleculares esenciales que un organismo necesita para desarrollarse y prosperar. Ahora estamos trabajando en técnicas de cultivo e ingeniería que podrían permitirnos cultivar con acetato como fuente de energía adicional para aumentar el rendimiento agrícola, Marcus Harland-Dunaway, estudiante de doctorado en el laboratorio Jinkerson.

Producción de alimentos con fotosíntesis artificial

 

La fotosíntesis artificial permite cultivar alimentos en las condiciones más complicadas; que ha traído el cambio climático humano al liberar a la agricultura de su total dependencia de la luz.

Si los cultivos para las personas y los animales crecieran en condiciones reguladas y menos intensivas en recursos, la sequía; las inundaciones y la menor disponibilidad de tierras serían un peligro menor para la seguridad alimentaria mundial.

Además, se podrían cultivar en zonas urbanas y otras regiones que ahora no son aptas para la agricultura; e incluso alimentar a los futuros viajeros espaciales.

El uso de técnicas de fotosíntesis artificial podría suponer un cambio de paradigma en la forma de alimentar a la población. A medida que la producción de alimentos sea más eficiente, se necesitará menos tierra, lo que reducirá el efecto medioambiental de la agricultura.

Además, la mejora de la eficiencia energética podría ayudar a alimentar a más miembros de la tripulación; al tiempo que se utilizan menos recursos para la agricultura en zonas no tradicionales, como el espacio, Robert Jinkerson.

Este método de producción de alimentos se presentó al Deep Space Food Challenge de la NASA y ganó la fase I.

Fuente: ecoinventos

Compartir:
Compartir:

Mediante la agricultura vertical, una empresa alemana dedicada a la producción de hortalizas ha demostrado que es posible reducir en un 99% la superficie de cultivo y en un 95% el consumo de agua, sin pesticidas ni químicos, gracias a la agricultura vertical.

De la mano de SSI Schaefer, esta empresa ha construido huertos verticales altamente automáticos utilizando su solución SSI LOGIMAT, un almacén vertical que aporta las condiciones necesarias para sus cultivos.

SSI LOGIMAT proveyó la plataforma tecnológica necesaria, tanto las soluciones físicas, en forma de sistemas para almacenamiento y desalmacenamiento, como un software adecuado que pudo integrarse en las soluciones de software propias de la empresa. El resultado posibilita una solución que es hasta 400 veces más eficiente que la agricultura tradicional y que permite que en un área de 25 m² sea posible cultivar el equivalente a lo que se produce en 8.000.

La agricultura vertical representa un modelo con múltiples ventajas: permite acercar el producto al consumidor, acorta considerablemente la cadena de suministro, y con ello la necesidad de transporte y las emisiones de CO₂ en un contexto en el que el cambio climático, junto con el agotamiento de los recursos, la pérdida de ecosistemas y de biodiversidad, son un hecho. Significa asimismo un mejor acceso a alimentos frescos, nutritivos y diversos para el consumidor y también empleos mejor pagados y de mayor calidad para una nueva generación de agricultores, destacan los fundadores de esta empresa.

SSI Schaefer estará presente en el evento Logistics & Automation de Ifema Madrid que se llevará a cabo los días 26 y 27 de octubre.

 

Fuente: financialfood.es

Compartir: