Compartir:

Vamos a explicar la diferencia entre un concepto y otro que debemos tener muy en cuenta a la hora de elaborar el plan de abonado, así conseguiremos una fertilización eficiente y una nutrición óptima para la planta.

La FERTILIZACIÓN consiste en proporcionar a la planta los fertilizantes (sólidos o líquidos) que se han seleccionado y preparado previamente.

La NUTRICIÓN es el proceso para obtener los nutrientes que hay en los fertilizantes una vez que han sido aplicados al medio donde se desarrolla las plantas, para que una vez absorbidos, puedan crecer y producir adecuadamente.

fertilización

Fertilización y Nutrición vegetal son dos conceptos muy relacionados pero distintos:

Una planta puede estar sobradamente fertilizada si se ha aportado suficiente cantidad de fertilizante, pero puede estar mal nutrida si con esos fertilizantes no puede tomar los nutrientes que necesita para poder desarrollarse y producir correctamente.

Por tanto, a la hora de planificar el abonado no debemos pensar en qué producto vamos a aplicar al suelo, sino en los nutrientes que queremos aportar a nuestros cultivos. Si las plantas reciben los nutrientes necesarios mediante el aporte de fertilizantes, estarán sanas y en condiciones de producir.

Utilizaremos una analogía entre el cuerpo humano y las plantas. La alimentación (al igual que fertilización) sería el acto de comer (alimentarse). A pesar de estar muy bien comidos o alimentados, en caso de utilizar alimentos de mala calidad o no ingerirlos en el momento adecuado, podríamos estar mal nutridos. En el caso de la fertilización de los cultivos, podemos fertilizar mucho (en exceso) pero si estos fertilizantes no se aportan en el momento oportuno, o el tipo de suelo interfiere con los fertilizantes aportados de forma inapropiada o interactúan otros factores exógenos, la planta puede tener una mala nutrición.

nutrición vegetal

La fertilización es una práctica que conlleva el aporte de fertilizantes para una correcta nutrición del cultivo, es decir, una herramienta de la nutrición vegetal. Un cultivo puede fertilizarse con altas cantidades de fertilizantes y sin embargo no estar bien nutrido (de hecho, es lo que sucede en muchos casos). La fertilización es la acción de aplicar fertilizantes, en cambio la nutrición es un concepto más amplio, que abarca al anterior, pero que tiene en cuenta todos los factores que influyen sobre el balance de nutrientes minerales que realmente necesita la planta para su crecimiento, desarrollo y producción de granos. Por lo tanto, se usa a la fertilización, entre otras prácticas, para nutrir a los cultivos.

Una correcta fertilización es el aporte correcto de fertilizantes en el momento oportuno, que tiene como consecuencia una buena nutrición de los cultivos. Para realizar una correcta fertilización y en consecuencia una buena nutrición, es necesario conocer la demanda de nutrientes de los cultivos, el momento de aportar los fertilizantes y conocer los parámetros exógenos, es decir, aquellos que influyen en la correcta asimilación de los fertilizantes (tipo de suelo, sistema de riego, características del agua de riego, etc).

Si quieres fertilizar correctamente y que tus cultivos tengan una nutrición óptima te recomendamos que utilices ORCELIS FITOCONTROL, donde podrás conocer las necesidades nutritivas de tus cultivos y cómo planificar una fertilización adecuada de una manera rápida y sencilla.

Por:

Marco A. Oltra Cámara, Doctor Ingeniero Agrónomo, profesor en la Universidad de Alicante y experto en fertirrigación.

Compartir:
Compartir:

La fertilización de las plantas siempre resulta algo complejo si nunca se ha hecho. Existen muchas formulaciones y cada cultivo requiere de un fertilizante o fertilizantes específicos si se quieren hacer bien las cosas. Además, en cada estado fenológico del cultivo, los aportes de nutrientes van a ser diferentes.

¿Hay un mejor fertilizante para todo? Lo cierto es que no. La especificidad de cada cultivo, sustrato y situación, exige diferentes tipos de fertilizantes que luego veremos pero sí es cierto que los hay muy específicos en sus formulaciones para según que cultivos y usos.

Pero antes, sentemos unas bases sobre la nutrición vegetal a grandes rasgos por si eres nuevo en esto de alimentar a la flora.

Los macronutrientes esenciales para casi cualquier planta.
Son 3 y los conocerás de sobra si ya te has paseado más veces por este blog. El famoso NPK. Nitrato, fósforo y potasio.

¿Y no te preguntas por qué el carbono no está incluido? Al fin y al cabo, los seres vivos de este planeta estamos basados en la química del carbono.

Lo obtienen principalmente del CO2 que metabolizan con la fotosíntesis. Este carbono es el pilar fundamental de la glucosa y de muchas otras moléculas que las plantas metabolizan.

Los 3 macronutrientes NPK no se encuentran en el aire en las cantidades suficientes como para que una planta pueda abastecerse. Es cierto que el aire tiene nitrógeno en un 79% aproximadamente pero se considera inerte por ser nitrógeno gas N2. Esta molécula contiene un triple enlace que la hace treméndamente estable y es complicado que reaccione con la planta de forma directa. Hay algunas plantas que pueden nutrirse de N2 atmosférico, contadas excepciones. Lo más habitual es que el nitrógeno atmosférico sufra un ciclo, en el que se va fijando al suelo convirtiéndose a medio y largo plazo en nitrógeno mineral, la forma que tiene planta de absorberlo para sus procesos metabólicos.

Cualquier cultivo necesita de estos 3 elementos para crecer correctamente
Estos tres macronutrientes pueden venir de diferentes orígenes, orgánico o mineral que luego veremos. Ahora vamos a centrarnos en cuál es la función de cada uno de ellos. Tiene muchas funciones pero las más destacables son:

Nitrógeno: Importantísimo en las primeras fases del cultivo y en el crecimiento de la parte vegetativa de planta. Se suele decir que el nitrógeno es importante para las «partes verdes» de la planta.

Fósforo: Importante para la implantación del cultivo en su fase vegetatativa (estimula el desarrollo radicular). Además, debemos tener un buen contenido en fósforo para asegurar una buena floración y cuajado.

Potasio: Importante en la formación de frutos y maduración. Es un elemento muy importante en frutales por ejemplo para conseguir frutos grandes y de calidad.

Las proporciones de cada uno de ellos en una formulación, depende del cultivo, del momento en el que se encuentre el propio cultivo (primeras fases, floración, cuajado…) y de la calidad nutricional del suelo que tengamos que suplir. Algunos ejemplos de formulaciones comunes son:

NPK 13-40-13
NPK 15-15-15
NPK 15-5-30
NPK 14-40-5
NPK 23-5-5
NPK 15-10-15
NPK 17-6-18
NPK 20-20-20
NPK 20-5-20
NPK 7-12-38
Hay muchas, muchas más.

Fertilizante compuesto de mezcla
Y si hay macro, es porque también hay micronutrientes
Prácticamente el 99% de los minerales que la planta necesita son estos tres. Y aunque los micronutrientes en cantidad no supongan nada en comparación con NPK, su importancia en pequeñas dosis es vital para muchas funciones metabólicas de las plantas.

Son principalmente el hierro, el manganeso, zinc, cobre, boro y molibdeno.

El déficit de alguno de estos nutrientes también acarrea serios perjuicios para el crecimiento de las plantas que muchas veces son confundidos con enfermedades producidas por virosis, bacterias hongos o nematodos. La clorosis férrica es un ejemplo típico de carencia de hierro.

Los planes de abonado deben incluir en sus fórmulas también ciertas dosis muy controladas de estos micronutrientes. Normalmente, una buena fertilización orgánica en forma de humus, compost, estiércol madurado, abonos verdes etc. suele suplir estos micronutrientes esenciales y otros que no hemos mencionado.

Los mejores fertilizantes se dan en cultivos muy tecnificados.
Ya está demostrado que un exceso de fertilización es muy perjudicial para el medio. Una fertilización mal ejecutada por exceso puede afectar a la planta negativamente, puede alterar el equilibrio del suelo, tanto a nivel fisicoquímico como biológico. También puede contaminar acuíferos, haciendo totalmente inservible el agua para consumo humano.

Por eso, cada vez más se optimizan al máximo las dosis y se hacen mejores y mejores fertilizantes, cada vez más específicos y tecnificados.

Aquellos cultivos de altas inversiones como los invernaderos con o sin suelo (hidropónicos) la dosificación de macro y micronutrientes es de una precisión asombrosa. El retorno de inversión también es algo que condiciona la elección de los fertilizantes y nos podemos permitir ese nivel de tecnificación. Cultivos de invernadero por ejemplo (tomate, pimiento, fresa…) son cultivos típicamente tecnificados.

Y si nos vamos a hidropónicos donde la fertilización líquida hace su acto de presencia, entonces ya los niveles de tecnificación en la fertilización se nos disparan.

Fertilizantes según su formulación:
Abonos simples: Aquellos que aportan un solo nutriente a la planta. Son cada vez menos utilizados, en favor de los abonos complejos. De todas formas, para correcciones puntuales o necesidades muy especiales se siguen usando.

Abonos Compuestos: Tiene dos o tres de los macronutrientes esenciales. Se llaman binarios (2 de los 3 nutrientes) o ternarios (los 3 nutrientes) según su formulación . Pueden ser complejos (reaccionados químicamente NPK en un mismo gránulo) o mezclas (gránulos de cada nutriente por separado y mezclados).

Fertilizantes según su estado:
Sólidos: Suelen presentarse en forma granulada. Son muy habituales en monocultivos de gran extensión (secano y regadío) como cereal, leguminosas etc. Procedentes de la industria de fertilizantes. Son sintetizados de forma que se asegura que cada gránulo tenga la misma composición y equilibrio de cada nutriente. Este tipo son los mayoritarios en la agricultura convencional.

Líquidos: Son los mejores fertilizantes en cultivos de alta tecnificación donde el abonado va junto con el agua de riego. En cultivos de alto rendimiento como la marihuana se suelen dar este tipo de productos tan específicos. Y además son abonos totalmente de composición orgánica con su proporción concreta de NPK y contenidos variables y equilibrados de los antes llamados micronutrientes. Productos como Fertilizantes Biological Activated Cocktail BAC o Fertilizantes Advanced Nutrients son un ejemplo de la amplia variedad de fórmulas, mezclas y formas de aplicación.

Fertilizantes según su modo de aplicación
Otra clasificación habitual se produce en el modo de aplicación aunque esta clasificación es más abierta.

Abonos de fondo: Son aquellos que se aplican al suelo antes de la implantación del cultivo o en el momento de sembrar y suelen ser de liberación controlada.

Abonos de cobertera: Abono que se aplica durante el alguna fase concreta del cultivo para apoyar nutricionalmente en algún estado fenológico crucial para el cultivo como la floración o el cuajado.

Fertilizantes de aplicación foliares: Aquellos que se aplican pulverizados sobre las hojas como fertilización de apoyo

Fertilizantes para fertirrigación: Son aquellos que se mezclan con el agua de riego. Utilizados en cultivos de regadío tecnificados donde se controla al milímetro la dosis de riego (invernaderos, hidroponia).

Ninguna de estas clasificaciones son excluyentes. Es decir, cuanta más información tengamos o podamos dar de un fertilizante, más seguros estaremos de cómo usarlo. Un ejemplo puede ser un Abono compuesto ternario líquido para aplicación foliar 10-20-10. Con esto estamos dando una gran cantidad de cómo es ese fertilizante.

Compartir:
Compartir:

La línea de fertilizantes Fertihouse nace de la mano del ingeniero agrónomo Carlos Rodríguez Orta como fruto de años de experiencia en el cultivo de hortícolas de alto rendimiento. Experto en nutrición vegetal en sustratos inertes, estos productos se diferencian en la tecnología que usan para la protección y transporte de los iones minerales de los cuales se nutre la planta.

Podéis encontrar Fertihouse en más de 20 tiendas de la provincia de Murcia y Alicante y por supuesto en su tienda web.

Características de la tecnología Fertihouse
La tecnología propia de Fertihouse está basada en moléculas de carbono de bajo peso molecular fácilmente asimilables por la planta, transformadas a partir de ácidos fúlvicos de roca natural mediante un proceso físico exclusivo.

Estudios sobre el comportamiento microbiano en el suelo han demostrado que los compuestos de carbono y azúcares de estructura sencilla las sustancias fúlvicas de determinado tamaño de molécula producen un mayor estímulo de esta microbiota en comparación con estructuras orgánicas más complejas.

«Tus plantas más sanas, más grandes y durarán más años en plenitud.

El efecto de los productos Fertihouse es una mejor asimilación de agua y nutrientes y esto se traduce en plantas más sanas, vigorosas y de mayor longevidad.

Sus productos, son fertilizantes completos que aportan todos los macronutrientes primarios, los macronutrientes secundarios y los micronutrientes. Están libres de cloruros, sulfatos y metales pesados.

Línea de productos Fertihouse
Fertihouse tiene un tipo determinado de fertilizante para cada momento del ciclo de cualquier tipo de planta teniendo cada uno un estudiado equilibrio entre cationes y aniones. Los productos Fertihouse son fertilizantes completos que aportan todos los macronutrientes primarios, los macronutrientes secundarios y los micronutrientes. Están libres de cloruros, sulfatos y metales pesados.

Fertihouse Universal
FertiHouse Universal Fertilizante
Solución fertilizante completa para los que no quieren complicaciones. Se puede usar en cualquier tipo de planta tanto de interior como de exterior y en cualquier fase vegetativa.

Fertihouse Crecimiento Vegetativo
Fertihouse Vegetativo fertilizante
Una solución fertilizante completa para favorecer un potente crecimiento de la planta en los primeros estados de desarrollo. La relación de nitrógeno/potasio es de tres.

Fertihouse Floración
Fertihouse Floración fertilizante
Una solución fertilizante completa para inducir en la planta el inicio de la fase de floración. La relación nitrógeno/potasio es de 1.

Fertihouse engorde y maduración
Es una solución fertilizante de fósforo, potasio y microelementos indicada en la última fase de aquellas plantas con fruto para favorecer su llenado y maduración.

Fertihouse Cobre
Es una solución fertilizante de cobre complejado con ácido glucónico para asegurar la máxima absorción por parte de la planta.

Hasta aquí hemos visto parte de la línea de abonos minerales, pero Fertihouse también tiene una línea de abonos orgánicos.

Fertilizantes de origen orgánico Fertihouse
Fertihouse Kelp
Extracto de Eklonia Maxima procedente del atlántico sur con un gran efecto bioestimulante.

Fertihouse Organium
Aminoácidos de origen vegetal al 8% y extractos de microalgas de agua dulce.

Fertihouse Huma Power

Extracto húmico de gran calidad procedente de leonardita canadiense, de pequeño tamaño de molécula, gran cantidad de grupos funcionales, excelente estado de oxigenación y gran reactividad. Posee un 21,5 % de extracto húmico (14% de ácidos fúlvicos y 7,5% de ácidos húmicos), un 12% de carbono orgánico y un 5% de K2O.

Fertihouse Plus
Aminoácidos libres al 6% de origen vegetal de alta calidad y fácilmente asimilables por la planta con un 14% de materia orgánica y un 8% de carbono orgánico. Es una fuente de carbono orgánico lo que hace que la planta aproveche más eficientemente el abono a la vez que aumenta la eficiencia del uso del agua.

Fuente: agromatica

Compartir:
Compartir:

Hoy vamos a conocer las necesidades exactas que tiene un suelo independientemente de la planta que cultivemos (eso ya dependerá del abonado de mantenimiento). Imagina que tenemos un suelo al que nunca hemos abonado.

¿Cómo lo preparamos? Vamos a conocerlo.

Básicamente, de lo que nosotros estamos hablando es del abonado de fondo o la forma en la que previamente preparamos el suelo, pero también sirve para mejorar las condiciones de nuestro jardín. Imagínate que tienes que preparar un bancal profundo. Estamos echando la misma cantidad de abono orgánico (compost o estiércol) en un suelo pobre que en un suelo rico, y en principio no debería ser así. Bueno, puestos a no ser quisquillosos, total, para un huerto pequeño tampoco hay que andar tonteando, ¿no?

¿Pero y si lo hacemos a gran escala o tenemos un huerto grande? Aquí ya, cada kilogramo de abono cuenta y podemos optimizarlo enormemente con unas simples fórmulas. ¿Probamos?

Lo primero de todo, conocer cómo es nuestro suelo
Para hacerlo bien necesitamos conocer una serie de parámetros. Uno de ellos es saber qué textura tiene nuestro suelo. Lo podemos hacer a través de un análisis de suelo o bien de forma casera como ya comentamos.

A partir de esto ya podemos disponer de gran información en nuestro suelo, y conoceremos el drenaje, la forma en la que tenemos que regar y, también muy importante, la calidad del agua (siempre que podamos escoger).

abonado de fondo
La importancia del abonado de fondo
El abonado de fondo es una enmienda que realizamos 1 mes o 2 antes de plantar cualquier cultivo. Lo que buscamos es aumentar las propiedades de nuestro suelo, mejorar la textura, el drenaje, y en definitiva, hacer una cama mucho más agradable para nuestras plantas. Saber cuánto hay que añadir es sencillo.

Imagínate que sabemos (a través de un análisis de suelo) que nuestra parcela donde queremos cultivar tiene un 1,6 % de materia orgánica. Es un porcentaje bastante bajo donde periódicamente tendremos que abonar en profundidad nuestras plantas.

Algunos autores prestigiosos establecen entre un 2 y un 3% de materia orgánica como óptimo para un suelo. Hay quién pide más, pero nosotros, que tenemos una mentalidad ahorradora, consideramos que un 2 % es más que suficiente para mantener nuestro jardín. Si tienes pretensiones económicas, quizá puedas subir un poco más. 😉

Bien… empecemos con los cálculos…

DATOS PREVIOS:

Densidad del suelo: 1,74 gr/cm3
Porcentaje de materia orgánica de nuestro suelo: 1,6
Profundidad de mejora del suelo: 0,3 m
¿Qué cantidad de materia orgánica tiene actualmente nuestro suelo?
Cantidad de M.O. [2%]: 10.000 (m2) · 0,3 (m) · 1,74 (gr/cm3)· (2/100) = 104.400 [kg/ha] = 104,4 [t M.O./ha]

Pero nosotros tenemos 500 metros cuadrados de jardín, por lo que tendría que ser 5.220 kg.

Es mucha cantidad de materia orgánica, ¡y es lo que queremos! Ahora vamos a ver cuanta tiene actualmente nuestro suelo…

Cantidad de M.O. [1,6%]: 10.000 (m2) · 0,3 (m) · 1,74 (gr/cm3)· (1,6/100) = 83.520 [kg/ha] = 83,52 [t M.O./ha]

Y para la superficie de nuestro jardín: 4.176 kg

Ahora simplemente tendremos que restar la cantidad ideal con la nuestra:

Cantidad de M.O. que necesitamos: 5.220 – 4.176 = 1.044 kg

Fíjate, para mejorar enórmemente nuestro suelo tan sólo necesitamos 1.044 kg (poco más de una tonelada) de materia orgánica.

pila de estiércol
Vale… ¿Y cuánto cuesta eso?
Como siempre, tenemos que ver si es factible económicamente aportar dicha cantidad de materia orgánica. Para ello nos vamos a las bases de precios de jardinería y vemos lo que cuesta 1 metro cúbico (luego lo convertiremos a kg) de estiércol tratado.

1 metro cúbico de estiércol tratado = 27,29 €

Parece barato ¿no? Bueno, a fin de cuentas son desechos de animal… 😉

¿Cuántos kg tiene un metro cúbico?
Para saber esto necesitamos conocer la densidad del estiércol. Hay dos autores (Boussignault, Keyser) que coinciden en que la media de densidad del estiércol es de 400-500 kg/metro cúbico. Nosotros, que buscamos el término medio, lo vamos a dejar en 450 kg. Ahora ya sabemos que 450 kg de estiércol tratado vale 27,29 €.

Como nosotros necesitábamos 1.044 kg, dicha cantidad de estiércol tratado nos costará 63 €.

¡Tan sólo 63 € te separan de una gran mejora de tu suelo!

Esto ha sido un ejemplo claro que fácilmente puedes adaptar a tus condiciones de trabajo. Lo único difícil de conseguir es conocer el porcentaje actual de materia orgánica de tu suelo. Sabiéndolo el resto es fácil. Sólo la superficie de suelo, la profundidad a la que querrías mejorarlo y la densidad, y ¡listo!

Si quieres, puedes ir empezando a generar dicha cantidad de forma totalmente casera.

Fuente: aromatica.es

Compartir:
Compartir:

El manganeso (Mn) es un importante micronutriente para las plantas y requerido en mayor cantidad. Al igual que sucede con cualquier otro elemento, su deficiencia o su toxicidad pueden representar una limitante para el desarrollo de las plantas.

manganeso Generalidades sobre el manganeso
El manganeso contribuye al funcionamiento de varios procesos biológicos incluyendo la fotosíntesis, la respiración y la asimilación de nitrógeno. También interviene en la germinación del polen, el crecimiento del tubo polínico, el alargamiento celular en la raíz y la resistencia a patógenos de la misma.

Es esencial en la síntesis de proteínas, ya que participa en la asimilación del amonio (NH4+). Regula el metabolismo de los ácidos grasos. Fomenta la formación de raíces. Activa el crecimiento, influyendo el crecimiento alargador de las células. Convierte los nitratos que forman las raíces en formas que la planta pueda utilizar.

El manganeso también interviene de forma específica en la actividad hidroxilamina reductasa, dentro de la fase de la reducción de los nitratos y en actividad ácido indol acético oxidasa.

La deficiencia de manganeso en los cultivos se manifiesta mayormente en una clorosis en las hojas ya que el manganeso juega un papel importante en la fotosíntesis y por ende puede influir en la clorofila que es la cromoproteína que le da el color verde a las plantas.

El hierro
El manganeso y el hierro están vinculados por lo que los síntomas de deficiencias suelen confundirse, sin embargo, a diferencia principal consiste en que, en el caso del manganeso, aparecen áreas bronceadas entre las venas; y en el del hierro, las hojas se vuelven casi blancas.

Cuando los suelos tienen un pH muy alto o el suelo es muy arenoso puede presentarse una deficiencia del manganeso ¿Cómo se puede contrarrestar dicha deficiencia? Aplicando por ejemplo un quelato de Manganeso EDTA eficaz y estable, micro gránulo de alta solubilidad, con estabilidad de pH de 4 a 9 y un alto grado de quelación.

El manganeso (Mn) es un importante micronutriente para las plantas y, después del hierro, es el que las plantas requieren en mayor cantidad. Al igual que sucede con cualquier otro elemento, su deficiencia o su toxicidad pueden representar una limitante para el desarrollo de las plantas. En varias formas se asemeja al hierro, por lo que su deficiencia o su toxicidad suelen ser confundidas con las de éste.

manganeso
Función

Respecto a las plantas, es uno de los elementos que más contribuyen al funcionamiento de varios procesos biológicos incluyendo la fotosíntesis, la respiración y la asimilación de nitrógeno. También interviene en la germinación del polen, el crecimiento del tubo polínico, el alargamiento celular en la raíz y la resistencia a patógenos de la misma.

Deficiencia
Los síntomas de deficiencia de manganeso, que a menudo se asemejan a los de la deficiencia de hierro, son: clorosis intervenal (hojas amarillas con venas verdes) en las hojas jóvenes y, en ocasiones, manchas bronceadas hundidas en las áreas cloróticas intervenales.

También el crecimiento de las plantas puede verse disminuido y retrasado. La deficiencia de manganeso puede surgir cuando el pH del sustrato de cultivo es superior a 6,5, pues dicho elemento es fijado y pierde disponibilidad para su absorción.

Asimismo, la deficiencia puede presentarse debido a bajos índices de aplicación de fertilizante, al empleo de fertilizantes para usos múltiples (cuyo contenido de micronutrientes normalmente es menor), a la lixiviación excesiva o a demasiadas aplicaciones de quelato de hierro.

Toxicidad

La toxicidad del manganeso comienza con la quemadura de las puntas y los bordes de las hojas más viejas; o bien con la aparición de manchas de color rojizo a castaño en ellas. Cuando la toxicidad es severa, las manchas pueden aumentar en número y en tamaño formando parches en esas mismas hojas.

Con niveles de pH por debajo de 5,5, el manganeso se vuelve altamente soluble y es probable que las plantas muestren síntomas de toxicidad.

Esto ocurre particularmente con el geranio zonal, la caléndula, el lisianthus y la impatiens de Nueva Guinea. La toxicidad del manganeso ocurre cuando el índice de aplicación de fertilizante es excesivo.

manganeso

Similitudes con el hierro
El manganeso y el hierro están íntimamente vinculados. El manganeso compite con el hierro y, en menor grado, con el zinc, el cobre, el magnesio y el calcio para ser absorbido por la planta. Para obtener mejores resultados, mantenga el índice; tanto del manganeso como del hierro en 1:2 y realice pruebas en el sustrato de cultivo para comprobar que el pH; así como los niveles de todos los nutrientes, se encuentre dentro del rango de lo normal.

El manganeso y el hierro muestran síntomas similares en cuanto a deficiencia y toxicidad. Respecto de ambos minerales, la deficiencia se manifiesta como clorosis intervenal de las hojas jóvenes.

La diferencia principal consiste en que, en el caso del manganeso, aparecen áreas bronceadas entre las venas; y en el del hierro, las hojas se vuelven casi blancas. En cuanto a la toxicidad, provenga ésta del hierro o del manganeso, sus síntomas son idénticos, por lo que es difícil distinguirlos.

Es imposible hacer conjeturas e implementar medidas correctivas sin pruebas de laboratorio que confirmen una deficiencia de manganeso. Ante la sospecha de algún problema relativo al manganeso (o al hierro); lo más prudente será analizar tanto el sustrato como el tejido de las plantas -normales y anormales-; así como la solución nutritiva que se esté aplicando. Esta es la única forma de comprobar la presencia de toxicidad o deficiencia de manganeso.

Dónde encontrar manganeso

En la mayor parte de los sustratos de cultivo que se encuentran en el Mercado se incluye un paquete de nutrientes iniciadores que contiene manganeso y otros micronutrientes esenciales; sin embargo, sólo cubrirá los requerimientos del cultivo durante una semana, aproximadamente.

Una alimentación constante con fertilizantes completos solubles en agua es la mejor manera de asegurarse de que todos los micronutrientes esenciales; comprendido el manganeso, serán recibidos en la proporción correcta. Analice su agua antes de la temporada de producción y pida la opinión del fabricante de fertilizantes acerca de los productos necesarios para realzar su calidad.

Algunas fuentes de este líquido contienen manganeso, aunque rara vez el suficiente para satisfacer las necesidades de un cultivo.

Fuente: tradecorp.com y pthorticulture.com

Compartir:
Compartir:

La Agencia Española de Seguridad Alimentaria y Nutrición (Aesan), adscrita al Ministerio de Consumo, pidió este martes “prudencia” para “no generar alarma” en torno a un brote de Salmonella registrado en Noruega y que el país nórdico asocia al consumo de pepinos españoles.

Así lo precisaron a Servimedia fuentes de dicha agencia a raíz de una información adelantada por el diario El País, a partir de una información emitida por las autoridades noruegas. Las mismas fuentes puntualizaron que la información sobre la “posible procedencia española” de los alimentos “no está confirmada”.

Asimismo, aseveraron que la información que notificó Noruega mediante el Sistema Rápido de Alertas de la UE (RASFF) “no es concluyente” ni está “suficientemente verificada”, por lo que, a su juicio, podría deberse a “otro alimento”.

La Aesan ya se ha puesto en contacto con el Centro de Coordinación de Alertas y Emergencias y las autoridades autonómicas para, en el caso de que se tratase de un alimento de origen español, “tener analizada la trazabilidad”.

Brote en Noruega, Países Bajos y Suecia
El Instituto de Salud Pública de Noruega informó que un total de 72 personas en el país fueron diagnosticadas con la bacteria gastrointestinal Salmonella agona entre finales de octubre y principios de diciembre, 24 de las cuales requirieron hospitalización.

Después de analizar más de 50 entrevistas de pacientes e información de compra, se supo que “casi el 90 por ciento de los infectados habían comido pepino la semana antes de enfermar”. Este estudio ayudó a descartar otras hipótesis como fuente de infección en este brote y, «tras un extenso trabajo de rastreo por parte de la Autoridad Noruega de Seguridad Alimentaria», se identificaron determinados lotes de pepino de un proveedor español “como la fuente más probable de infección”.

Además del brote en Noruega, también se han notificado casos con la misma cepa en Suecia y los Países Bajos en el mismo período. Sin embargo, el hecho de que no se hayan reportado nuevos casos de enfermedad en las últimas semanas podría indicar que “el producto contaminado ya no está en el mercado” y que “el brote probablemente haya terminado”, indica el comunicado, “aunque no puede descartarse que aparezcan más casos”.

Fuente: fhi.no / noticiasdesalud.es

Compartir:
Compartir:

El cambio climático mundial es resultado del aumento de las emisiones de gases de efecto invernadero inducidos por la acción humana. Esta modificación global del clima afectará severamente diversos sectores, se espera que el incremento de las temperaturas provoque escasez de agua e inundaciones. Se estima que muchas poblaciones de animales y plantas puedan reducirse en tamaño, debido a las altas temperaturas y a las menores precipitaciones, lo que limitará la disponibilidad de fuentes alimentarias esenciales para la nutrición del ser humano.

Las alteraciones generadas por el cambio climático afectarán seriamente la agricultura a nivel mundial. El calentamiento global ocasionará que se produzca una disminución en los rendimientos de los cultivos, debido a las crecientes temperaturas y a las menores precipitaciones, lo que a su vez agudizará la inseguridad alimentaria.

Durante la cumbre del cambio climático (COP21), celebrada en París entre el 28 y 30 de noviembre de 2015, México, junto a otras 194 naciones, refrendaron su compromiso para fortalecer el modelo de producción económica sustentable, estableciendo un acuerdo para reducir en al menos un 30% las emisiones de gases de efecto invernadero para el año 2020.

Huella de carbono

En ese sentido, las actividades productivas desarrolladas en el país, como en cualquier otra parte del mundo, en la medida en la que utilizan energía a lo largo de sus cadenas de valor, son responsables de una cantidad significativa de emisiones de gases de efecto invernadero a la atmósfera. La agricultura no es una excepción, ya las prácticas agrícolas actuales son responsables de la emisión de más del 30% del total de gases de efecto invernadero producidos globalmente. La suma de esas emisiones de gases es lo que se denomina huella de carbono.

La agricultura juega un importante papel en el balance de los tres gases de efecto invernadero más significativos; dióxido de carbono (CO2), óxido de nitrógeno (N2O) y metano (CH4). Particularmente, las emisiones de N2O están relacionadas con el manejo del suelo y el uso de fertilizantes nitrogenados.

El óxido nitroso absorbe radiación infrarroja de la atmósfera contribuyendo al efecto invernadero, siendo actualmente el responsable del 5% del calentamiento global y pudiendo llegar hasta valores del 10% en el futuro cercano.

Las emisiones de N2O se ven muy influenciadas por la humedad, temperatura, contenido de carbono, nitrógeno del suelo y tipo de fertilizante. En general, se producen menos emisiones de N2O cuando el contenido de materia orgánica es menor, por ello, la aplicación de compostas y otros biofertilizantes favorecen la emisión de este gas invernadero.

Además, el nitrógeno aplicado el suelo a través de fertilizantes salinos tiene un índice de asimilación muy bajo por las plantas. Del total de fertilizante que se aplica al suelo, dependiendo del manejo y del tipo de fertilizante aplicado, más del 50% (hasta el 80%) es perdido por la lixiviación.
El nitrógeno se pierde también por la volatilización de los gases que se producen en el suelo, amonio, óxido nítrico y óxido nitroso.

Por otro lado, los fertilizantes orgánicos pueden provocar impactos ambientales negativos si no existe un control en el almacenamiento, el transporte o la aplicación, debido a la emisión de gases contaminantes hacia la atmósfera, y la acumulación de metales pesados en el suelo y en los cuerpos hídricos superficiales.

Es importante que los productores agrícolas se aseguren de que el tipo, la cantidad y el tiempo de aplicación del nitrógeno no resultara en una pérdida significante por desnitrificación, volatilización o lixiviación. Una buena estructura en el suelo mejora la eficacia en el uso del nitrógeno y reduce las pérdidas de N2O. Optimizar la eficiencia de nitrógeno es la clave para mantener y hasta incrementar la productividad y las ganancias del campo.

Agricultura sostenible

El manejo inadecuado de los agroecosistemas con fines de uso agrícola, ha originado en mayor o menor medida cambios y deterioro de las propiedades físicas, químicas y biológicas del suelo, con el consiguiente efecto de disminución sobre la productividad y la producción en general. Por lo anterior, resulta crítico contar con prácticas de agricultura sostenible que, además de reducir el impacto de la agricultura en el medio ambiente, mejoren el rendimiento de los cultivos.

La fuente de fertilizantes y el manejo del cultivo pueden afectar las emisiones de N2O.
Los fertilizantes de liberación controlada y estabilizados son productos que minimizan el potencial de pérdidas de nutrientes al ambiente, cuando se comparan con los fertilizantes salinos convencionales. Los fertilizantes que no se evaporan ni se lixivian deben ser preferentemente utilizados. Sus beneficios para reducir las emisiones de N2O son una alternativa a corto plazo para disminuir el daño ecológico generado por la actividad agrícola.

En este sentido, la nutrición vegetal basada en el uso de coloides amfífilos enantiomórficos permite trasladar los nutrientes desde el medio externo que sustenta la planta (suelo u otro sustrato), y transportarlos de forma precisa hasta el nivel intracelular de las células de los tejidos y órganos donde la planta los requiera.

Con base a ello, se pueden suministrar nutrientes en la forma y cantidades necesarias para acelerar o desacelerar procesos vegetativos o productivos, ya que la tecnología basa en coloides amfífilos posibilita aplicar nutrientes miles de veces más pequeños que las partículas de fertilizantes químicos, lo que convierte a los nutrientes aplicados en ultra-asimilables, y que además no generan efectos adversos al suelo, reduciendo así el deterioro del terreno agrícola.

La tecnología de los coloides amfífilos eficientizan el suministro de nutrientes a las plantas, disminuyendo las emisiones de gases de efecto invernadero y pérdidas por lixiviación, al volver los micro y macro nutrientes en sustancias ultra-asimilables, lo cual permite aplicar sólo la cantidad de fertilizante que la planta requiere.

Esta tecnología para la nutrición vegetal es totalmente amigable con el medio ambiente, debido a que utilizan las cantidades adecuadas de nutrientes en función de la actividad metabólica de las plantas. Esto proporciona un 100% de integración asimilativa de los nutrientes al tejido vivo, tanto vegetativo como generativo. En contraste con los métodos de fertilización salina u orgánica.

Fuente: www.hortalizas.com

Foto de portada: www.valleybolivia.com

Compartir: