Compartir:

El limón es uno de los frutos más reconocidos debido a su versatilidad y propiedades medicinales. Se destaca por su alto contenido de vitamina C y minerales como calcio, hierro, magnesio, potasio y fibra.

Estos productos son una fuente de compuestos vegetales llamados flavonoides, que tienen efectos antioxidantes y antiinflamatorios. Según el portal Medical News Today, los antioxidantes ayudan a proteger las células del cuerpo del daño causado por factores adversos como los radicales libres, compuestos que generan el estrés oxidativo de las células.

Cáscara de limón
¿Cómo se toma el limón para desintoxicar el organismo y alcalinizar la sangre?
“Al reducir el daño celular, los antioxidantes también disminuyen el riesgo de muchas condiciones médicas, como enfermedades cardiovasculares, diabetes, obesidad y cáncer”, precisa la citada fuente.

Limón y corazón
Los limones son ricos en potasio y son aliados de la salud del corazón.
Además de las propiedades antioxidantes, según información del portal Nutrición y Farmacia, de España, al limón se le atribuyen otras bondades como las inmunoprotectoras. Esto debido a que es fuente de vitamina A, por lo que ayuda a aumentar la cantidad de anticuerpos, esenciales para proteger la salud.

Aliado de la sangre
Además, se dice que es beneficioso para conservar la sangre en buena condición. La mencionada fuente asegura que tiene efectos coagulantes, gracias a que con el calcio que ofrece al organismo, consigue mejorar la densidad de la sangre y mantenerla en los niveles adecuados. De igual forma, como es fuente de hierro, ayuda a aumentar la cantidad de hemoglobina en el organismo, facilitando que el oxígeno llegue a todo el cuerpo.

La cáscara de limón se puede aprovechar de múltiples formas

¿Qué personas no deben comer limón?
Un artículo publicado en el diario El Universal, de México, refiere un estudio publicado en The Journal of Clinical Endocrinology and Metabolism, en el que se concluye que los cítricos contienen una sustancia antioxidante llamada hesperidina. Este compuesto estimula la producción de óxido nítrico, un vasodilatador que relaja las paredes de las arterias, facilitando la circulación de la sangre.

El agua de limón ayuda a fortalecer el sistema inmune y a limpiar el organismo de impurezas.

Asimismo, el mencionado componente disminuye la inflamación y la rigidez de los vasos sanguíneos en personas con síndrome metabólico. Ambos factores están ligados a un mayor riesgo de enfermedades cardiovasculares, asegura la Sociedad Chilena de Obesidad, por lo que con su consumo regular se reduce la posibilidad de enfrentar este tipo de afecciones.

Un beneficio más relacionado con la sangre es que gracias a sus antioxidantes, este fruto cítrico ayuda a purificarla. “Gracias a esto, se facilita la eliminación de desechos y sustancias tóxicas presentes en el torrente sanguíneo, previniendo enfermedades relacionadas con el sistema circulatorio y cardiovascular”, precisa una publicación de la revista Mejor con Salud, escrito por Carolina Betancourth.

Una de las combinaciones líquidas más populares.
Beneficios de tomar agua tibia con limón antes de dormir
Mejora la circulación

De acuerdo con un estudio publicado en The Journal of Clinical Endocrinology and Metabolism, los cítricos contienen una sustancia antioxidante llamada hesperidina. Este compuesto estimula la producción de óxido nítrico, un vasodilatador que relaja las paredes de las arterias, facilitando la circulación de la sangre.

Asimismo, la hesperidina del limón disminuye la inflamación y la rigidez de los vasos sanguíneos en personas con síndrome metabólico. Ambos factores están ligados a un mayor riesgo de enfermedades cardiovasculares, asegura la Sociedad Chilena de Obesidad.

Circulación / Sangre
Los cítricos contienen una sustancia antioxidante llamada hesperidina.
Disminuye el colesterol

El buen funcionamiento de los vasos sanguíneos también depende de la cantidad de lípidos en la sangre. Cuando hay un exceso de grasas como los triglicéridos o el colesterol LDL (malo), se acumulan y se adhieren a las paredes de las arterias.

Con el paso del tiempo, este depósito de grasas, conocido como placa, se endurece, estrecha los vasos sanguíneos y limita el flujo de sangre rica en oxígeno hacia los órganos. A esta condición se le denomina aterosclerosis, indica el Instituto Nacional del Corazón, Pulmón y la Sangre de los Estados Unidos.

Para evitar este tipo de padecimientos, es importante mejorar los hábitos de alimentación e incluir más limón en las comidas. Un artículo de Cardiovascular Drug Reviews encontró que la naringenina del limón previene la acumulación de placa en las arterias.

Colesterol
El buen funcionamiento de los vasos sanguíneos también depende de la cantidad de lípidos en la sangre.

Reduce la presión arterial
Una investigación publicada en Journal of Nutrition and Metabolism demostró que la ingesta de limón disminuye la presión arterial sistólica, especialmente si se combina con actividad física; por ejemplo, tomando agua de limón después de una caminata diaria.

Este efecto se produce gracias al aumento de las concentraciones de ácido cítrico en la sangre y la micción frecuente por estimulación del metabolismo. La Clínica Mayo menciona que las propiedades diuréticas del limón eliminan el exceso de sodio del torrente sanguíneo y, por lo tanto, bajan la presión arterial.

Presión arterial alta
La ingesta de limón disminuye la presión arterial sistólica.
Evita la formación de coágulos

Un artículo de Pakistan Journal of Pharmaceutical Sciences concluyó que el jugo de limón tiene efectos anticoagulantes que podrían utilizarse para la prevención de la trombosis. Esta enfermedad ocurre cuando hay coágulos que bloquean los vasos sanguíneos e impiden el paso de la sangre, explica la Escuela de Medicina de la Universidad Johns Hopkins.

Algunas causas comunes de este padecimiento son la edad, el sobrepeso, el tabaquismo, el embarazo, las píldoras anticonceptivas, el reposo prolongado debido a hospitalizaciones o por estar sentado demasiado tiempo como en los viajes largos en auto o avión.

Investigadores de la Universidad Tokai Gakuen de Japón descubrieron que el jugo de limón previene la formación de coágulos en pasajeros de vuelos extensos, mejorando la circulación de la sangre en un 20 %. Esto se debe a su alto contenido en ácido cítrico y polifenoles.

creativa
El jugo de limón tiene efectos anticoagulantes que podrían utilizarse para la prevención de la trombosis. –

Previene la anemia
La anemia por deficiencia de hierro es un padecimiento frecuente en niños, informa el Instituto Nacional de Salud Pública. En México, por ejemplo, el 23, 3 % de los menores de cinco años sufren esta condición; del mismo modo, el 10 % de los niños de cinco a 11 años presenta una cantidad insuficiente de este mineral en la sangre.

La Clínica Mayo, por su lado, advierte que la anemia causa fatiga, debilidad, taquicardia, dificultad respiratoria, dolores de cabeza, mareos, aturdimiento, piel pálida y mayor riesgo de infecciones. Sin embargo, ello puede prevenirse con alimentos ricos en vitamina C como el limón. The British Journal of Nutrition probó que este cítrico ayuda a la absorción de hierro en el torrente sanguíneo.

Anemia
La anemia por deficiencia de hierro es un padecimiento frecuente en niños
Otras bondades

Una de las formas más comunes de aprovechar las propiedades del limón es consumiendo agua preparada con el zumo de este fruto. Según Medical News Today, uno de los beneficios de esta bebida es que ayudaría a bajar de peso, debido a que los limones contienen un tipo de fibra llamada pectina, que puede ayudar a reducir el apetito y la ingesta de calorías.

El toronjil sirve para tratar síntomas como dolor de estómago y el insomnio.
Consumir limón de manera regular le aporta diversos beneficios al organismo.
El jugo de limón es naturalmente bajo en calorías. Por esta razón, sustituir los refrescos azucarados con agua fresca con limón es una forma saludable de reducir la ingesta de calorías, un paso positivo si se quieren perder unos kilos. Sin embargo, sus resultados se darán si esta bebida se consume en el marco de una dieta saludable.

De igual forma, por su alto contenido de antioxidantes, vitaminas y minerales, esta fruta es un alimento diurético. Por ello, ayuda a eliminar líquidos y sustancias tóxicas retenidas en el organismo. Gracias a este beneficio, se considera indicado para limpiar el cuerpo y prevenir el desarrollo de algunas enfermedades.

Por último, gracias a su contenido de vitamina C y sus propiedades antibióticas y antivirales, el limón también es aliado de la salud respiratoria. Esta fruta ayuda a limpiar las vías respiratorias y fortalece el sistema inmunológico, lo que puede resultar positivo para hacerle frente a enfermedades como el asma, la bronquitis y otros problemas respiratorios, asegura Mejor con Salud.

Baja la fiebre
El consumo de agua caliente con limón es ideal para controlar la fiebre en casos de gripe. Así, este remedio ayuda a aumentar las defensas y reducir la temperatura corporal, porque aumenta la transpiración.

Fiebre
La fiebre normalmente es causada por una infección.
Reduce los problemas respiratorios

Por su alto contenido de vitamina C y sus propiedades antibióticas y antivirales, el limón también es uno de los mejores aliados de la salud respiratoria. Esta fruta ayuda a limpiar las vías respiratorias y también fortalece el sistema inmunológico, lo que puede resultar positivo para hacerle frente a enfermedades como el asma, la bronquitis y otros problemas respiratorios.

Getty Creativo
El limón también es uno de los mejores aliados de la salud respiratoria.
Aporta al cuidado dental
El jugo de limón puede funcionar para reducir el dolor de muelas cuando se aplica directamente en la zona dolorida. También es útil en casos de encías sangrantes, además de ser un gran aliado para blanquear los dientes y combatir el mal aliento.

Pero como todo, no se debe abusar de su uso directo para evitar correr riesgos, ya que el ácido a largo plazo podría afectar el esmalte de los dientes.

Dientes amarillos

El jugo de limón puede funcionar para reducir el dolor de muelas cuando se aplica directamente en la zona dolorida.

Contribuye con una piel saludable

El consumo diario de limón contribuye a tener una piel más saludable, radiante y joven. Así, puede utilizarse de manera tópica para tratar infecciones cutáneas, acné, exceso de grasa en la piel, cicatrices y manchas.

En todos estos casos, se debe aplicar en horas de la noche, ya que, si se expone al sol, podría tener efectos contrarios.

Piel sana gracias al uso de áloe vera
El consumo diario de limón contribuye a tener una piel más saludable, radiante y joven.
Elimina cálculos renales

Otro beneficio que se le atribuye al limón es el de acelerar la eliminación de los cálculos renales. Estos suelen formarse cuando se concentran niveles muy altos de minerales, con frecuencia como consecuencia de un desbalance en la alimentación.

Expertos aconsejan llevar una dieta baja en sal y tomar líquidos para prevenir los cálculos renales.

La ingestión de jugo de limón parece disipar el efecto de un gran número de citratos, que a su vez aumentan la excreción de oxalatos

Según este estudio publicado en los Archivos Españoles de Urología, “La ingestión de jugo de limón parece disipar el efecto de un gran número de citratos, que a su vez aumentan la excreción de oxalatos”. Razón por la cual el consumo de este cítrico resultaría efectivo.

Fuente: revistasemana.com

Compartir:
Compartir:

Un cultivo pasa por varias etapas de crecimiento, donde el resultado final es la cosecha y recogida de frutos. Sin embargo, para obtener un rendimiento adecuado y una calidad óptima de dicha cosecha, hace falta algunas cosas que todo agricultor debe saber. Una de ellas es el aporte de potasio que, como vamos a ver ahora, se puede hacer con sulfato de potasio.

Una práctica habitual de uso del potasio (y en este caso concreto, del sulfato de potasio) es utilizarlo para madurar y mejorar la calidad de los frutos.

El potasio lo encontramos en el suelo a partir de silicatos, cuyo origen lo tenemos que asignar a las rocas y minerales magmáticas como micas y feldespatos. Sin embargo, para no entrar en todo este tema que realmente no interesa tanto, básicamente mencionamos cómo encontramos el potasio en el suelo, desde el punto de vista de rendimiento.

Potasio directamente asimilable: va fijado en la superficie de las arcillas y en el complejo arcillo-húmico, que más de una vez hemos comentado en Agromática.
Potasio interlaminar: esta forma se encuentra entre las distintas láminas de la arcilla y le cuesta mucho a la raíz asimilar el potasio que se puede encontrar en ella. Sin embargo, está ahí.
Potasio en fracción mineral: es una fracción del total que podemos encontrar en el suelo no disponible para la planta. A partir de fenómenos como la meteorización o la acción degradativa de bacterías, se puede liberar muy lentamente y ser absorbido por la planta.
Decir, todo cabe, que el potasio directamente asimilable sólo forma el 0,1 o 0,15% del total de este elemento que podemos encontrar en el suelo.

sulfato de potasio en el suelo
La función del potasio en la planta
La función que ejerce el potasio sobre los cultivos es, por ser genérico, de tipo fisico-químico.

Se encarga de estimular el contenido en agua de las células, por lo que este hecho está muy relacionado con el engorde y calidad del fruto. También ejerce un efecto de control sobre la permeabilidad de dichas membranas celulares. Menor pérdida de agua se traduce en mayor conservación de frutas y hortalizas.

También contribuye a aportar resistencia a las plantas frente al frío, pues regula la concentración salina de los jugos celulares.

El potasio y el nitrógeno son buenos amigos, por lo que un plan de abonado rico en potasio favorecerá la absorción de nitrógeno.

Potasio efectivo = nitrógeno efectivo

Igualmente, con la sequía ocurre lo mismo. Como el potasio se encarga de reducir la velocidad de transpiración de la planta, en momentos de sequía tendrá más resistencia y será capaz de aguantar estoicamente en situaciones de estrés ambiental.

Y, por supuesto, el potasio ejerce un papel importantísimo en la elaboración de azúcares. Eso que hacen que las chirimoyas del chirimoyo estén tan dulces o la sandía tan jugosa. Por cierto, si después de lo que hemos dicho te apetece plantar sandías, no tienes más que seguir las recomendaciones de su cultivo. 🙂

Niña comiendo sandía con sulfato de potasio
Abonado de maduración en melón y sandía
Cuando llega la época de maduración en melón y sandía, una táctica común que utilizan muchos agricultores es utilizar el sulfato potásico para aumentar la conductividad y conseguir una mayor producción de azúcares.

El sulfato potásico aporta casi 900 mS/cm por cada medio gramo solubilizado en 1 litro de agua. O lo que es lo mismo, medio kilo por cada 1000 litros de agua.

[alert style=»red»]1 gramo/litro de de sulfato potásico aporta 1,8 mS/cm de conductividad [/alert]
Al elevar la conductividad con este fertilizante, también se incrementa la resistencia a absorber agua por parte de la planta, por lo que se reduce la probabilidad de que los frutos se rajen.

Aunque este rajado no está directamente ligado con la capacidad de absorber agua (puesto que en condiciones normales las paredes de los frutos pueden soportarlo), depende de las condiciones de sobremaduración de los frutos, que muchas veces ocurre esperando un buen resultado económico en su venta.

Estudios científicos han avalado que introducir un poco de amonio (fosfato monoamónico o sulfato amónico) reduce la capacidad de absorción de agua, por lo que también puede ayudar a estimular los procesos de maduración y reducir el agrietado.

Sin embargo, puede ser contraproducente introducir nitrógeno en esta fase, por lo que si tuviésemos que elegir entre estos dos fertilizantes, tenderíamos más por el fosfato monoamónico (12-61-0), que contiene menos nitrógeno (12%) y aporta fósforo que activa la maduración.

El hecho de estresar a la planta aumentando la conductividad hace que se incremente la producción de azúcares y aumenten los º Brix. Esto último, reduciendo la entrada de agua hacia la planta, también se puede conseguir recortando los riegos. Sin embargo, puede resultar peligroso en momentos de alta temperatura y gran insolación.

Jugar con riegos moderados, la aplicación de sufalto potásico y un poco de amonio es la combinación perfecta para conseguir frutos de gran dulzor.

Características del sulfato potásico
Es importante conocer las características que nos ofrece este abono, sobre todo a la hora de establecer un plan de abonado y una fertilización potásica.

Normalmente, la riqueza del sulfato de potasio es del 50%, y esto está relacionado con las unidades fertilizantes. Como puedes ver en el anterior enlace, para establecer la cantidad de abono potásico que se aporta a un cultivo (según las U.F.) y el sulfato de potasio, se hace mediante la siguiente relación.

100 U.F. de potasio para un cultivo = 200 kg de sulfato de potasio soluble en agua, K2O (50%).

En cuanto al azufre (en forma de SO3), se aporta entre un 18% y un 18,5%.

Beneficios de su aplicación
El azufre que contiene el sulfato de potasio juega un papel importante en la fisiología de las plantas, activando la producción de proteínas, enzimas y vitaminas.
Al reducir el pH del entorno radicular, en suelos alcalinos mejora la disponibilidad de fósforo e hierro, sobre todo, aunque también influye en la asimilación de otros micronutrientes.
Es interesante gestionar un producto altamente concentrado en potasio sin necesidad de aportar nitrógeno (como sí lo haría el nitrato potásico)
Puede ser utilizado para agricultura ecológica.
[alert style=»red»]No todos los sulfatos potásicos del mercado tienen registro ecológico, pero hay algunos que sí lo tienen.[/alert]
sulfato de potasio y fotosintatos hoja
¿Cuándo abonar con sulfato potásico?
Primero, partimos de la base de que se ha elegido sulfato de potasio porque nuestra intención, aparte de aportar potasio al suelo (y a la planta), también queremos reducir el pH de un suelo alcalino.

Si también tenemos un suelo con moderado contenido en sales y tenemos que aportar algún fertilizante a base de este elemento, usaríamos el sulfato de potasio.

Hay cultivos que responden muy bien a este abono, por la mezcla del potasio (del 47 al 52%, normalmente 50%) y el azufre (17%), como cítricos, frutales, brassicas, leguminosas, vid, platanera, etc.

En riego por aspersión, se puede aportar entre 1 y 2,5 g/l de agua, o 2-9 kg/100 L en goteo.

Algunas recomendaciones, según podemos extraer de algunos productos a base de sulfato de potasio:

Cítricos: 6 kg/ha y día.
Frutales: 250-500 kg/ha y año.
Hortícolas: 300-1.000 kg/ha.
Pimiento: 7 kg/ha y día, en la fase de engorde y maduración (durante las últimas 2-3 semanas).
Olivo: 0,75-2 kg/árbol y día
Piña: 8-9 kg/ha y día, durante la floración de los retoños.
Platanera: 5 kg/ha y día.
Eso sí, todo esto es a modo de recomendación. Lo ideal es establecer un plan de abonado adecuado según un análisis de suelo.

Fertilización y abonado con sulfato de potasio
La fertilización potásica
También hay que tener en cuenta los niveles de potasio que, de forma natural o por aportaciones anteriores, tiene el suelo donde vamos a cultivar.

Si los niveles de potasio en el suelo son normales o adecuados, simplemente tenemos que aportar potasio según la absorción que realice la planta de este elemento. Es decir, mantener la fertilidad del suelo en los niveles naturales y adecuados.

Si el suelo tiene pobres niveles de potasio, el objetivo es saturar los espacios interlaminaes de las arcillas (lo que hemos comentado antes) y las zonas superficiales. Si tenemos un suelo arenoso, las aportaciones de sulfato de potasio serán mayores con respecto a otra textura, puesto que habrá un mayor lavado.

Si tenemos un suelo con mucho contenido en potasio, hay que evaluar, mediante análisis de suelo, posibles problemas relacionados con acumulación de sales y carencias de magnesio en la planta.

Esto no quiere decir que no haya magnesio en el suelo, sino que la planta no es capaz de asimilarlo por el antagonismo K/Mg.

Dentro de la aplicación de sulfato potásico, tendremos distintas formas de presentación, adaptadas a fertirrigación (abono rapidamente soluble en agua) y en gránulo, para abonado de fondo, lentamente soluble.

Sulfato potásico en polvo

Rápidamentre soluble en tanques de fertirrigación, para aplicación en aspersión, goteo e inyectado en las tuberías de riego.

Sulfato potásico granulado

La bola de sulfato potásico puede ir sin protección o con protección (capa cerosa) para controlar la solubilidad. Generalmente se aplica directamente al suelo como abonado de fondo o alrededor de los árboles, y va diluyéndose lentamente por la humedad ambiental o la lluvia.

Necesidades de potasio de las hortalizas
Aunque según el técnico que recomiende el plan de abonado y todas las variables que pueden influir en la cantidad con la que se abona un suelo (sobre todo, medido en el análisis del suelo), un ejemplo de las unidades fertilizantes de potasio que necesitan algunas hortalizas y verduras sería el siguiente: (Extraído de la guía práctica de fertilización racional de los cultivos).

Cultivos al aire libre

Alcachofa (15-20 t/ha): 300-380 kg/ha

Apio (60-80 t/ha): 380-600 kg/ha

Berenjena (50-70 t/ha): 320-400 kg/ha

Brócoli (15-20 t/ha): 370-450 kg/ha

Calabacín (20-30 t/ha): 110-160 kg/ha

Cebolla (60-70 t/ha): 200-250 kg/ha

Col (45-55 t/ha): 290-320 kg/ha

Coliflor (25-35 t/ha): 300-360 kg/ha

Espinaca (22-28 t/ha): 180-220 kg/ha

Guisante (3-5 t/ha): 90-140 kg/ha

Judía verde (12-16 t/ha): 130-160 kg/ha

Lechuga (30-40 t/ha): 180-230 kg/ha

Melón (30-40 t/ha): 250-330 kg/ha

Pepino (25-35 t/ha): 120-160 kg/ha

Pimiento ( 55-65 t/ha): 300-340 kg/ha

Puerro (25-35 t/ha): 130-200 kg/ha

Rábano (22-28 t/ha): 90-110 kg/ha

Sandía (45-55 t/ha): 180-220 kg/ha

Tomate (55-65 kg/ha): 300-330 kg/ha

Zanahoria (60-70 t/ha): 300-450 kg/ha

Incompatibilidades del sulfato potásico
Para todos aquellos que tengan abonadora, decir que no todo vale ni se puede mezclar todo con todo. En una tabla básica de incompatibilidades entre elementos nutricionales (fertilizantes), podemos encontrar la siguiente relación:

COMPATIBILIDADES: nitrato potásico, nitrato amónico, fosfato monopotásico, fosfato monoamónico, nitrato de magnesio, sulfato de magnesio.

INCOMPATIBILIDADES: nitrato de calcio.

Su fgr en agua:

Solubilidad en agua 111 g/L (20 °C)
120 g/L (25 °C)
240 g/L (100 °C)
Diferencias del sulfato potásico con respecto al cloruro potásico
Estas dos fórmulas de fertilizantes de potasio se caracterizan, sobre todo, por no aportar nitrógeno al cultivo. Es decir, es una alternativa al conocido nitrato potásico que aporta, un 13% de nitrógeno y un 46% de potasio.

En cuanto a riquezas, hay pocas diferentes, ya que el sulfato potásico aporta entre un 50 y 52% de potasio (y 46-47% de SO3) y el cloruro potásico tiene una riqueza en potasio del 60%, algo más que el anterior.

Sin embargo, hay que tener en cuenta que hay cultivos que son sensibles a la aportación de cloros, pero teniendo un cálculo del aporte de cloro al suelo y lo que van a absorber los cultivos, es un fertilizante bastante recomendable y no hay que tenerle miedo.

¿Qué potasio debe tener un suelo?
Independientemente de que aportemos al suelo (y posteriormente a la planta) sulfato de potasio, nitrato de potasio, cloruro potásico o materia orgánica (que suele tener entre 4 y 6% de este elemento), debemos mantener unos niveles mínimos de este elemento para garantizar una producción adecuada.

Esto lo podemos saber si conocemos los valores de referencia en un análisis de suelo.

En el complejo de cambio, el potasio debe estar entre el 2 y 6% del total, quedando un suelo en buenas condiciones de la siguiente manera:

Cationes de cambio (meq/100 gr):

Sodio: 0,5-3,0%
Potasio:2,0-6,0%
Calcio:40,0-80,0%
Magnesio:10,0-30,0%
Como se ve, en este caso los grandes protagonistas son el calcio y magnesio.

Extracto saturado

Un valor aceptable de potasio en el suelo, para no tener problemas de suministro de este elemento a las plantas y, al contrario, para no perjudicar la absorción de otros elementos si está en exceso, sería el siguiente:

Potasio: 1,0-5,0 meq/L
En el caso de que el valor esté cercano a 1 y dependiendo del cultivo, habrá que aplicar materia orgánica (M.O.) que puede enriquecerse con cloruro de potasio o sulfato de potasio, en caso de que se quiera limitar la aplicación de cloruros.

Si tenemos un suelo de pH alto y con evidentes problemas de clorosis férrica a mitad de campaña, acidificar el suelo con sulfato de potasio mejorará enormemente la respuesta futura del cultivo.

Por contra, si tenemos un suelo ya de por sí ácido, tendremos que buscar alternativas al sulfato de potasio y elegir fertilizantes o compuestos que no reduzcan el pH. En este caso, el aporte de materia orgánica (compost, purín líquido, estiércol, etc.) aportará muchos beneficios (mejora de la CIC del suelo, textura, esponjosidad, etc.) y aportará potasio.

Aumentar 200 UF/ha de potasio en suelo con bajo contenido en este elemento

Suele hacerse en cultivos exigentes en este elemento, aportar abonado de fondo rico en potasio. Por ejemplo, en tomate de industria, patata, cebolla, etc.

para ello, si aplicamos 400 kg/ha de sulfato de potasio, aportamos 200 kg puros de potasio y alrededor de 75 kg de azufre

Si contamos con una materia orgánica al 4% de potasio, necesitamos aplicar 5000 kg/ha de este elemento. Quizá, la mezcla ideal sea utilizar mezclar ambos componentes para aprovechar todo su potencial.

Compartir:
Compartir:

¿Existe el mejor fertilizante para todo?

La fertilización de las plantas siempre resulta algo complejo si nunca se ha hecho. Existen muchas formulaciones y cada cultivo requiere de un fertilizante o fertilizantes específicos si se quieren hacer bien las cosas. Además, en cada estado fenológico del cultivo, los aportes de nutrientes van a ser diferentes.

¿Hay un mejor fertilizante para todo? Lo cierto es que no. La especificidad de cada cultivo, sustrato y situación, exige diferentes tipos de fertilizantes que luego veremos pero sí es cierto que los hay muy específicos en sus formulaciones para según que cultivos y usos.

Pero antes, sentemos unas bases sobre la nutrición vegetal a grandes rasgos por si eres nuevo en esto de alimentar a la flora.

Los macronutrientes esenciales para casi cualquier planta

Son 3 y los conocerás de sobra si ya te has paseado más veces por este blog. El famoso NPK. Nitrato, fósforo y potasio.

¿Y no te preguntas por qué el carbono no está incluido? Al fin y al cabo, los seres vivos de este planeta estamos basados en la química del carbono.

Lo obtienen principalmente del CO2 que metabolizan con la fotosíntesis. Este carbono es el pilar fundamental de la glucosa y de muchas otras moléculas que las plantas metabolizan.

Los 3 macronutrientes NPK no se encuentran en el aire en las cantidades suficientes como para que una planta pueda abastecerse. Es cierto que el aire tiene nitrógeno en un 79% aproximadamente pero se considera inerte por ser nitrógeno gas N2. Esta molécula contiene un triple enlace que la hace tremendamente estable y es complicado que reaccione con la planta de forma directa. Hay algunas plantas que pueden nutrirse de N2 atmosférico, contadas excepciones. Lo más habitual es que el nitrógeno atmosférico sufra un ciclo, en el que se va fijando al suelo convirtiéndose a medio y largo plazo en nitrógeno mineral, la forma que tiene planta de absorberlo para sus procesos metabólicos.

Cualquier cultivo necesita de estos 3 elementos para crecer correctamente

Estos tres macronutrientes pueden venir de diferentes orígenes, orgánico o mineral que luego veremos. Ahora vamos a centrarnos en cuál es la función de cada uno de ellos. Tiene muchas funciones pero las más destacables son:

Nitrógeno: Importantísimo en las primeras fases del cultivo y en el crecimiento de la parte vegetativa de planta. Se suele decir que el nitrógeno es importante para las «partes verdes» de la planta.

Fósforo: Importante para la implantación del cultivo en su fase vegetativa (estimula el desarrollo radicular). Además, debemos tener un buen contenido en fósforo para asegurar una buena floración y cuajado.

Potasio: Importante en la formación de frutos y maduración. Es un elemento muy importante en frutales por ejemplo para conseguir frutos grandes y de calidad.

Las proporciones de cada uno de ellos en una formulación, depende del cultivo, del momento en el que se encuentre el propio cultivo (primeras fases, floración, cuajado…) y de la calidad nutricional del suelo que tengamos que suplir. Algunos ejemplos de formulaciones comunes son:

– NPK 13-40-13

– NPK 15-15-15

– NPK 15-5-30

– NPK 14-40-5

– NPK 23-5-5

– NPK 15-10-15

– NPK 17-6-18

– NPK 20-20-20

– NPK 20-5-20

– NPK 7-12-38

Hay muchas, muchas más.

Y si hay macro, es porque también hay micronutrientes

Prácticamente el 99% de los minerales que la planta necesita son estos tres. Y aunque los micronutrientes en cantidad no supongan nada en comparación con NPK, su importancia en pequeñas dosis es vital para muchas funciones metabólicas de las plantas.

Son principalmente el hierro, el manganeso, zinc, cobre, boro y molibdeno.

El déficit de alguno de estos nutrientes también acarrea serios perjuicios para el crecimiento de las plantas que muchas veces son confundidos con enfermedades producidas por virosis, bacterias hongos o nematodos. La clorosis férrica es un ejemplo típico de carencia de hierro.

Los planes de abonado deben incluir en sus fórmulas también ciertas dosis muy controladas de estos micronutrientes. Normalmente, una buena fertilización orgánica en forma de humus, compost, estiércol madurado, abonos verdes etc. suele suplir estos micronutrientes esenciales y otros que no hemos mencionado.

Los mejores fertilizantes se dan en cultivos muy tecnificados

Ya está demostrado que un exceso de fertilización es muy perjudicial para el medio. Una fertilización mal ejecutada por exceso puede afectar a la planta negativamente, puede alterar el equilibrio del suelo, tanto a nivel fisicoquímico como biológico. También puede contaminar acuíferos, haciendo totalmente inservible el agua para consumo humano.

Por eso, cada vez más se optimizan al máximo las dosis y se hacen mejores y mejores fertilizantes, cada vez más específicos y tecnificados.

Aquellos cultivos de altas inversiones como los invernaderos con o sin suelo (hidropónicos) la dosificación de macro y micronutrientes es de una precisión asombrosa. El retorno de inversión también es algo que condiciona la elección de los fertilizantes y nos podemos permitir ese nivel de tecnificación. Cultivos de invernadero por ejemplo (tomate, pimiento, fresa…) son cultivos típicamente tecnificados.

Y si nos vamos a hidropónicos donde la fertilización líquida hace su acto de presencia, entonces ya los niveles de tecnificación en la fertilización se nos disparan.

Fertilizantes según su formulación:

Abonos simples: Aquellos que aportan un solo nutriente a la planta. Son cada vez menos utilizados, en favor de los abonos complejos. De todas formas, para correcciones puntuales o necesidades muy especiales se siguen usando.

Abonos Compuestos: Tiene dos o tres de los macronutrientes esenciales. Se llaman binarios (2 de los 3 nutrientes) o ternarios (los 3 nutrientes) según su formulación . Pueden ser complejos (reaccionados químicamente NPK en un mismo gránulo) o mezclas (gránulos de cada nutriente por separado y mezclados).

Fertilizantes según su estado:

Sólidos: Suelen presentarse en forma granulada. Son muy habituales en monocultivos de gran extensión (secano y regadío) como cereal, leguminosas etc. Procedentes de la industria de fertilizantes. Son sintetizados de forma que se asegura que cada gránulo tenga la misma composición y equilibrio de cada nutriente. Este tipo son los mayoritarios en la agricultura convencional.

Líquidos: Son los mejores fertilizantes en cultivos de alta tecnificación donde el abonado va junto con el agua de riego. En cultivos de alto rendimiento como la marihuana se suelen dar este tipo de productos tan específicos. Y además son abonos totalmente de composición orgánica con su proporción concreta de NPK y contenidos variables y equilibrados de los antes llamados micronutrientes. Productos como Fertilizantes Biological Activated Cocktail BAC o Fertilizantes Advanced Nutrients son un ejemplo de la amplia variedad de fórmulas, mezclas y formas de aplicación.

Fertilizantes según su modo de aplicación

Otra clasificación habitual se produce en el modo de aplicación aunque esta clasificación es más abierta.

Abonos de fondo: Son aquellos que se aplican al suelo antes de la implantación del cultivo o en el momento de sembrar y suelen ser de liberación controlada.

Abonos de cobertera: Abono que se aplica durante el alguna fase concreta del cultivo para apoyar nutricionalmente en algún estado fenológico crucial para el cultivo como la floración o el cuajado.

Fertilizantes de aplicación foliares: Aquellos que se aplican pulverizados sobre las hojas como fertilización de apoyo

Fertilizantes para fertirrigación: Son aquellos que se mezclan con el agua de riego. Utilizados en cultivos de regadío tecnificados donde se controla al milímetro la dosis de riego (invernaderos, hidroponía).

Ninguna de estas clasificaciones son excluyentes. Es decir, cuanta más información tengamos o podamos dar de un fertilizante, más seguros estaremos de cómo usarlo. Un ejemplo puede ser un Abono compuesto ternario líquido para aplicación foliar 10-20-10. Con esto estamos dando una gran cantidad de cómo es ese fertilizante.

Fuente: agromatica.es

Compartir:
Compartir:

Introducción a la fertilidad del suelo

Fertilidad del suelo: El suelo es un recurso natural vivo no renovable. De su calidad depende la capacidad de sustentar la producción primaria, que es la base de los sistemas productivos ganaderos en el sur de Chile. Además, las características del mismo permiten su sostenibilidad en el tiempo, al influir, mantener y/o mejorar la calidad de otros recursos naturales como el agua, biodiversidad y aire.

Las principales funciones del suelo son: aportar agua a las plantas según capacidad de retención de humedad; proveer a las plantas de nutrientes esenciales provenientes de la fertilidad natural del suelo o de prácticas de manejo con enmiendas y/o fertilización; contribuir con oxígeno a las raíces y eliminar el dióxido de carbono (CO2 ) producido; transportar y distribuir calor, proporcionando la temperatura adecuada para la germinación de semillas y desarrollo del sistema radical de las plantas, siendo también su soporte físico de anclaje.

Un suelo fértil proporciona variados servicios ecosistémicos (retención de carbono, regulación del clima, ciclo de nutrientes, purificación del agua, reducción de la contaminación, etc.) que permiten la vida en nuestro planeta e impactan los sistemas productivos agropecuarios directamente.

Nivel de productividad

Para conservar la capacidad del suelo de mantener un adecuado nivel de productividad, a través del tiempo, es necesario proteger y conservar su fertilidad, incentivando su estabilidad ante procesos que provocan su degradación (física, química y/o biológica).

Las malas prácticas de manejo (Ej. monocultivos, sobre fertilización, quema de residuos agrícolas, aplicación de agroquímicos en exceso, etc.), inciden en la fertilidad del suelo y producción (cultivos, praderas), generando sistemas productivos poco sostenibles en el tiempo.

¿Qué es la fertilidad del suelo?

La fertilidad del suelo es la capacidad de suministrar los nutrientes esenciales (generados a través de continuos ciclos biogeoquímicos y de reciclaje) y, las condiciones necesarias para sustentar un adecuado desarrollo de las plantas y producción de cultivos y praderas. Actualmente, se reconocen 17 nutrientes esenciales (sin los cuales no se puede completar el ciclo de vida) para las plantas.

La fertilidad del suelo depende de factores como el medio ambiente (Ej. propiedades físicas, químicas y biológicas del suelo y, también del clima) y de la influencia de las prácticas de manejo que realizan habitualmente los agricultores en los predios (Ej. laboreo, aplicación de enmiendas y/o fertilizantes, incorporación de residuos vegetales, riego, etc.).

Existen tres tipos de fertilidad de suelo (Figura 1a):

i) Fertilidad física, relacionada con la capacidad de aportar edafológicamente las condiciones necesarias para el desarrollo radicular de las plantas, la cual se relaciona con las características físicas como densidad, textura, estructura, porosidad, retención de humedad, etc., que permiten además dar el soporte a las plantas;

ii) Fertilidad química, es la capacidad del suelo de suministrar nutrientes esenciales para el crecimiento y desarrollo de las plantas (ej. macronutrientes como N, P, K, Ca, Mg y micronutrientes como Mo, Zn, Mn, B, Cl y Cu);

iii) Fertilidad biológica, se refiere a la presencia y actividad de microorganismos y lombrices que realizan procesos biológicos en el suelo (que involucran procesos físicos y reacciones químicas) que son imprescindibles para mantener la funcionalidad del suelo. Sin duda, con un buen nivel de fertilidad, el suelo contribuye a mejorar la producción agropecuaria a través de una nutrición balanceada y sostenible (Figura 1b).

fertilidad del suelo

¿Cuál es el nivel de fertilidad de los suelos volcánicos en las Regiones de Los Ríos y Los Lagos en Chile?

La actividad agropecuaria en las Regiones de Los Ríos y Los Lagos, se desarrolla sobre suelos volcánicos (Andisoles o Trumaos, Ultisoles o Rojos Arcillosos y Ñadis) bajo condiciones de variada acidez natural.

Estudios realizados a partir de muestras del laboratorio de suelos de INIA (n=98; Vistoso, 2019), indican que en suelos Trumaos, Ñadis y Rojos Arcillosos, en relación a los requerimientos óptimos para la mantención de praderas, un 58%, 100% y 95% presentan pH agua moderado a fuertemente ácido; un 76%, 88% y 29% presentan bajo contenido de suma de bases intercambiables; un 64%, 86% y 56% tiene una alta saturación de aluminio (condición acentuada en la Provincia de Chiloé con valores de hasta 76%, 95% y 78% con deficiencias de fósforo; y 76%, 92% y 76% con deficiencias de azufre, respectivamente (Cuadro 1).

Limitaciones

Estas limitaciones, implican que el nivel de fertilidad de estos suelos es, en general, bajo y, por ende, con una eficiencia reducida al aplicar fertilizantes solubles en agua (especialmente los fertilizantes fosforados).

Bajo estas condiciones, el suministro de nutrientes (ej. P, K, S, Ca, Mg, Na) puede ser deficiente y desbalanceado en estos suelos, incidiendo de forma negativa en el potencial productivo de cultivos y praderas, independiente del área geográfica. Por ello, es tan importante incluir dentro de la planificación predial, una fertilización balanceada, que incluya fertilizantes orgánicos e inorgánicos y enmiendas para corregir las deficiencias de nutrientes esenciales del suelo.

¿Por qué se genera la pérdida de fertilidad del suelo?

La disminución del nivel de fertilidad del suelo se debe a:

i) deficiencias y/o desbalances de nutrientes esenciales generados por la extracción de cultivos y praderas,

ii) disminución de la eficiencia en el uso de los nutrientes esenciales influida en parte por la fijación y retrogradación irreversible por algunos minerales del suelo y,

iii) pérdidas de nutrientes esenciales que ocurren en forma natural o inducida en los suelos.

Por lo tanto, es clave que el productor y su asesor técnico, diagnostiquen el suministro de nutrientes esenciales del suelo con el fin de establecer las mejores estrategias para alcanzar concentraciones adecuadas y balanceadas, logrando las condiciones óptimas para el crecimiento y mejoramiento de rendimientos de cultivos y/o praderas.

El diagnóstico de la fertilidad del suelo es un proceso en el cual se evalúa la cantidad de nutrientes esenciales disponibles para la nutrición de cultivos y praderas; permitiendo estimar la cantidad de fertilizante inorgánico u orgánico necesario aplicar para una adecuada nutrición y producción de cultivos y praderas.

El diagnóstico

Por ello, el diagnóstico de la fertilidad del suelo es una herramienta que contribuye a: determinar las necesidades de específicas de fertilizantes o enmiendas; generar recomendaciones adecuadas y económicas en cuanto a tipos y cantidades necesarias a aplicar; controlar la sobre fertilización (exceso de nutrientes) y minimizar las pérdidas al medio ambiente, al disminuir la contaminación de los recursos naturales (suelo, agua, aire y biodiversidad).

Cuadro 1. Parámetros químicos en suelos de las Regiones de Los Ríos y Los Lagos, Chile (0-20 cm).

fertilidad del suelo

Métodos de diagnóstico de la fertilidad del suelo

Las herramientas que ayudan a los productores y asesores a diagnosticar la fertilidad del suelo son: síntomas visuales de déficit de nutrientes esenciales; análisis foliar y análisis de suelo.

1) Síntomas visuales de deficiencia de nutrientes esenciales:

Los síntomas visuales de deficiencia de nutrientes esenciales (Figura 2) son una herramienta de diagnóstico del estado nutricional de las especies de cultivo y/o praderas y; ayudan a determinar las necesidades de aporte de nutriente esenciales.

Sin embargo, se debe considerar que un síntoma visual individual no es suficiente para realizar un diagnóstico definitivo del estado nutricional de una especie vegetal; debido a que muchos de los síntomas de deficiencia (como clorosis, quemaduras y necrosis) también pueden asociarse con más de una deficiencia nutricional y/o con otros estados de estrés.

Información útil y rápida

Aun así, su detección es útil en el marco general de un diagnóstico del estado de los nutrientes. Las principales ventajas de los síntomas de diagnóstico visual es que se obtiene información útil en forma fácil y rápida proporcionando una indicación inmediata del posible estado de los nutrientes.

En cambio, la principal desventaja de ellos; es que los síntomas visuales no se desarrollan (deficiencia oculta) hasta que generan importantes efectos detrimentales en el crecimiento; desarrollo y producción de las especies de cultivo y/o praderas.

Un productor o asesor experimentado puede aprender a usar este método visual en forma rápida; sin embargo, deberá conocer otras deficiencias de nutrientes que se describen en la Figura 2; así como tener conocimiento práctico para reconocer los síntomas de estrés vegetal en condiciones de campo.

Además; cuando aparece una deficiencia o anomalía nutricional detectada visualmente; el problema ya es importante y ha comprometido el rendimiento potencial del cultivo.

2) Análisis foliar:

El análisis de tejidos vegetales determina, bajo condiciones de laboratorio, la concentración de nutrientes totales de la especie vegetal durante la temporada de crecimiento. Se utiliza para diagnosticar deficiencias invisibles (monitoreo del estado nutricional del cultivo o pradera); confirmar síntomas visuales de déficit y detectar niveles tóxicos de nutrientes.

En general, es también una herramienta de diagnóstico para corregir futuros problemas de déficit de nutrientes. Por ejemplo, si se realiza el análisis foliar en plantas jóvenes; permitirá corregir deficiencias de nutrientes a través de la aplicación de fertilizantes en la misma temporada.

El método de muestreo es fundamental para obtener correctos resultados de análisis; base para la formulación de recomendaciones de fertilización o enmiendas. La planta debe estar en una etapa específica de crecimiento y se debe seleccionar un tejido específico (Cuadro 2).

Valor crítico

Posteriormente, con los resultados del análisis foliar se procede a comparar las concentraciones mínimas conocidas (valor crítico) para ese cultivo o pradera o rangos de suficiencia (Cuadro 3) y se determinan las deficiencias o excesos de nutrientes.

El valor inferior del rango de suficiencia indica el nivel crítico por debajo del cual se deben aplicar dosis adecuadas de fertilizantes o enmiendas; en cambio, el valor superior indica el nivel por sobre el cual se establece la toxicidad.

Sin embargo; los resultados del análisis foliar no se pueden utilizar como único determinante para generar para generar recomendaciones de aporte de nutrientes; ya que siempre se debe considerar la principal fuente de nutrientes que es el suelo.

El análisis de suelo complementa el análisis foliar; ya que cumple un rol fundamental para determinar las necesidades de nutrientes esenciales de cultivos y praderas.

3) Análisis de suelo:

Los análisis de suelo son herramientas para determinar el rango de disponibilidad de cada nutriente esencial previo a la siembra o inicio de la temporada de crecimiento para la absorción de nutrientes esenciales en cultivos y praderas.

Sin embargo, los resultados de un análisis de suelo están altamente determinados por la representatividad de la muestra de suelo colectada. Por ello; es extremadamente importante proporcionar, al laboratorio una muestra de suelo representativa permitiéndoles realizar un análisis confiable.

El INIA, sugiere colectar por cada unidad de muestreo (potrero) una muestra compuesta (20-30 submuestras por unidad de muestreo) en un patrón en zigzag a la profundidad estándar según cultivo o pradera, mezclar bien y enviar una submuestra al mismo u otro laboratorio acreditado con el fin de garantizar la coherencia de los métodos de análisis de suelos.

Variabilidad espacial

Debido a que los suelos de las Regiones de Los Ríos y Los Lagos presentan una marcada variabilidad espacial; topográfica y fisiográfica se recomienda que cada unidad de muestreo no sea mayor de 20 hectáreas para asegurar una adecuada representatividad.

Las pautas para interpretar las categorías de disponibilidad de los nutrientes esenciales (Cuadro 4) en el análisis de suelo, según el laboratorio de suelos de INIA; son las siguientes: categoría deficiente (rojo) significa que existe alta respuesta a la fertilización o enmienda de corrección; categoría media (amarillo) indica que existe respuesta probable a la fertilización o enmienda de corrección y categoría alta (verde) indica que no existe respuesta a la fertilización o enmienda de corrección.

Su correcta interpretación, ayuda tanto a productores como asesores técnicos a identificar con precisión los problemas nutricionales del suelo (deficiencia; antagonismo o toxicidad de nutrientes para cultivos y praderas) antes de que ocasionen problemas y a generar recomendaciones para la corrección/ mantenimiento de nutrientes a través de una estrategia de fertilización balanceada; según los requerimientos del ciclo vegetativo.

Acidez del suelo

Para ello, es importante considerar la neutralización de la acidez del suelo (aplicación de enmiendas calcáreas), aplicación de: fertilización de corrección; fertilización de producción y fertilización de mantención.

Finalmente, se debe tener presente que el uso eficiente y responsable de los fertilizantes reduce los costos de producción y los riesgos de pérdidas de nutrientes al aire (volatilización del amoniaco); al perfil del suelo (lixiviación o percolación de N) y/o cursos de agua superficial (escorrentía de N y P).

El contenido de este artículo fue elaborado por : Erika Vistoso Gacitúa y Josué Martínez-Lagos / INIA Remehue, para www.inia.cl.

Fuente: www.inia.cl

 

Compartir: